Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2eu1v | Structured version Visualization version GIF version |
Description: Double existential uniqueness. This theorem shows a condition under which a "naive" definition matches the correct one. Version of 2eu1 2652 with 𝑥 and 𝑦 distinct, but not requiring ax-13 2372. (Contributed by NM, 3-Dec-2001.) (Revised by Wolf Lammen, 2-Oct-2023.) |
Ref | Expression |
---|---|
2eu1v | ⊢ (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 ↔ (∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2eu2ex 2645 | . . . . 5 ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) | |
2 | moeu 2583 | . . . . . . . 8 ⊢ (∃*𝑦𝜑 ↔ (∃𝑦𝜑 → ∃!𝑦𝜑)) | |
3 | 2 | albii 1822 | . . . . . . 7 ⊢ (∀𝑥∃*𝑦𝜑 ↔ ∀𝑥(∃𝑦𝜑 → ∃!𝑦𝜑)) |
4 | euim 2619 | . . . . . . 7 ⊢ ((∃𝑥∃𝑦𝜑 ∧ ∀𝑥(∃𝑦𝜑 → ∃!𝑦𝜑)) → (∃!𝑥∃!𝑦𝜑 → ∃!𝑥∃𝑦𝜑)) | |
5 | 3, 4 | sylan2b 594 | . . . . . 6 ⊢ ((∃𝑥∃𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃!𝑥∃!𝑦𝜑 → ∃!𝑥∃𝑦𝜑)) |
6 | 5 | ex 413 | . . . . 5 ⊢ (∃𝑥∃𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 → ∃!𝑥∃𝑦𝜑))) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (∃!𝑥∃!𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 → ∃!𝑥∃𝑦𝜑))) |
8 | 7 | pm2.43b 55 | . . 3 ⊢ (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 → ∃!𝑥∃𝑦𝜑)) |
9 | 2euswapv 2632 | . . . 4 ⊢ (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃𝑦𝜑 → ∃!𝑦∃𝑥𝜑)) | |
10 | 8, 9 | syld 47 | . . 3 ⊢ (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 → ∃!𝑦∃𝑥𝜑)) |
11 | 8, 10 | jcad 513 | . 2 ⊢ (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 → (∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑))) |
12 | 2exeuv 2634 | . 2 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) → ∃!𝑥∃!𝑦𝜑) | |
13 | 11, 12 | impbid1 224 | 1 ⊢ (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 ↔ (∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 ∃*wmo 2538 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-mo 2540 df-eu 2569 |
This theorem is referenced by: 2eu5 2657 |
Copyright terms: Public domain | W3C validator |