MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2moswap Structured version   Visualization version   GIF version

Theorem 2moswap 2644
Description: A condition allowing to swap an existential quantifier and at at-most-one quantifier. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker 2moswapv 2629 when possible. (Contributed by NM, 10-Apr-2004.) (New usage is discouraged.)
Assertion
Ref Expression
2moswap (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑))

Proof of Theorem 2moswap
StepHypRef Expression
1 nfe1 2146 . . . 4 𝑦𝑦𝜑
21moexex 2638 . . 3 ((∃*𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → ∃*𝑦𝑥(∃𝑦𝜑𝜑))
32expcom 414 . 2 (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥(∃𝑦𝜑𝜑)))
4 19.8a 2173 . . . . 5 (𝜑 → ∃𝑦𝜑)
54pm4.71ri 561 . . . 4 (𝜑 ↔ (∃𝑦𝜑𝜑))
65exbii 1849 . . 3 (∃𝑥𝜑 ↔ ∃𝑥(∃𝑦𝜑𝜑))
76mobii 2546 . 2 (∃*𝑦𝑥𝜑 ↔ ∃*𝑦𝑥(∃𝑦𝜑𝜑))
83, 7syl6ibr 251 1 (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1538  wex 1780  ∃*wmo 2536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-11 2153  ax-12 2170  ax-13 2370
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-mo 2538
This theorem is referenced by:  2euswap  2645
  Copyright terms: Public domain W3C validator