MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2moswap Structured version   Visualization version   GIF version

Theorem 2moswap 2634
Description: A condition allowing to swap an existential quantifier and at at-most-one quantifier. Usage of this theorem is discouraged because it depends on ax-13 2365. Use the weaker 2moswapv 2619 when possible. (Contributed by NM, 10-Apr-2004.) (New usage is discouraged.)
Assertion
Ref Expression
2moswap (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑))

Proof of Theorem 2moswap
StepHypRef Expression
1 nfe1 2139 . . . 4 𝑦𝑦𝜑
21moexex 2628 . . 3 ((∃*𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → ∃*𝑦𝑥(∃𝑦𝜑𝜑))
32expcom 413 . 2 (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥(∃𝑦𝜑𝜑)))
4 19.8a 2166 . . . . 5 (𝜑 → ∃𝑦𝜑)
54pm4.71ri 560 . . . 4 (𝜑 ↔ (∃𝑦𝜑𝜑))
65exbii 1842 . . 3 (∃𝑥𝜑 ↔ ∃𝑥(∃𝑦𝜑𝜑))
76mobii 2536 . 2 (∃*𝑦𝑥𝜑 ↔ ∃*𝑦𝑥(∃𝑦𝜑𝜑))
83, 7imbitrrdi 251 1 (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1531  wex 1773  ∃*wmo 2526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-11 2146  ax-12 2163  ax-13 2365
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-mo 2528
This theorem is referenced by:  2euswap  2635
  Copyright terms: Public domain W3C validator