| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euex | Structured version Visualization version GIF version | ||
| Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2018.) (Proof shortened by BJ, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2562 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∃*wmo 2531 ∃!weu 2561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2562 |
| This theorem is referenced by: exmoeu 2574 dfeu 2588 euan 2614 euanv 2617 2exeuv 2625 eupickbi 2629 2eu2ex 2636 2exeu 2639 euxfrw 3692 euxfr 3694 eusvnf 5347 eusvnfb 5348 reusv2lem2 5354 reusv2lem3 5355 csbiota 6504 dffv3 6854 tz6.12cOLD 6885 ndmfv 6893 dff3 7072 csbriota 7359 eusvobj2 7379 fnoprabg 7512 zfrep6 7933 dfac5lem5 10080 initoeu1 17973 initoeu1w 17974 initoeu2 17978 termoeu1 17980 termoeu1w 17981 grpidval 18588 0g0 18591 zrninitoringc 20585 txcn 23513 bnj605 34897 bnj607 34906 bnj906 34920 bnj908 34921 neufal 36394 unqsym1 36413 bj-moeub 36837 moxfr 42680 onexomgt 43230 onexoegt 43233 omabs2 43321 eu2ndop1stv 47126 afveu 47154 afv2eu 47239 tz6.12c-afv2 47243 dfatco 47257 initc 49080 thincn0eu 49420 termcterm2 49503 termc2 49507 eufunclem 49510 eufunc 49511 euendfunc 49515 arweuthinc 49518 arweutermc 49519 diag1f1o 49523 diag2f1o 49526 prstchom2ALT 49553 |
| Copyright terms: Public domain | W3C validator |