Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > euex | Structured version Visualization version GIF version |
Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2018.) (Proof shortened by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2568 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
2 | 1 | simplbi 501 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1787 ∃*wmo 2537 ∃!weu 2567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-eu 2568 |
This theorem is referenced by: exmoeu 2580 dfeu 2594 euan 2622 euanv 2625 2exeuv 2633 eupickbi 2637 2eu2ex 2644 2exeu 2647 euxfrw 3634 euxfr 3636 eusvnf 5285 eusvnfb 5286 reusv2lem2 5292 reusv2lem3 5293 csbiota 6373 dffv3 6713 tz6.12c 6742 ndmfv 6747 dff3 6919 csbriota 7186 eusvobj2 7206 fnoprabg 7333 zfrep6 7728 dfac5lem5 9741 initoeu1 17517 initoeu1w 17518 initoeu2 17522 termoeu1 17524 termoeu1w 17525 grpidval 18133 0g0 18136 txcn 22523 bnj605 32600 bnj607 32609 bnj906 32623 bnj908 32624 neufal 34332 unqsym1 34351 bj-moeub 34770 moxfr 40217 eu2ndop1stv 44289 afveu 44317 afv2eu 44402 tz6.12c-afv2 44406 dfatco 44420 zrninitoringc 45302 thincn0eu 45986 prstchom2ALT 46031 |
Copyright terms: Public domain | W3C validator |