| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euex | Structured version Visualization version GIF version | ||
| Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2018.) (Proof shortened by BJ, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2564 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 ∃*wmo 2533 ∃!weu 2563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2564 |
| This theorem is referenced by: exmoeu 2576 dfeu 2590 euan 2616 euanv 2619 2exeuv 2627 eupickbi 2631 2eu2ex 2638 2exeu 2641 euxfrw 3675 euxfr 3677 eusvnf 5328 eusvnfb 5329 reusv2lem2 5335 reusv2lem3 5336 csbiota 6474 dffv3 6818 ndmfv 6854 dff3 7033 csbriota 7318 eusvobj2 7338 fnoprabg 7469 zfrep6 7887 dfac5lem5 10018 initoeu1 17918 initoeu1w 17919 initoeu2 17923 termoeu1 17925 termoeu1w 17926 grpidval 18569 0g0 18572 zrninitoringc 20591 txcn 23541 bnj605 34919 bnj607 34928 bnj906 34942 bnj908 34943 neufal 36450 unqsym1 36469 bj-moeub 36893 moxfr 42795 onexomgt 43344 onexoegt 43347 omabs2 43435 eu2ndop1stv 47235 afveu 47263 afv2eu 47348 tz6.12c-afv2 47352 dfatco 47366 initc 49202 thincn0eu 49542 termcterm2 49625 termc2 49629 eufunclem 49632 eufunc 49633 euendfunc 49637 arweuthinc 49640 arweutermc 49641 diag1f1o 49645 diag2f1o 49648 prstchom2ALT 49675 |
| Copyright terms: Public domain | W3C validator |