![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > euex | Structured version Visualization version GIF version |
Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2018.) (Proof shortened by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2614 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
2 | 1 | simplbi 498 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1765 ∃*wmo 2576 ∃!weu 2613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 df-eu 2614 |
This theorem is referenced by: exmoeu 2628 dfeu 2642 dfeuOLD 2649 exmoeuOLD 2651 euan 2676 euanv 2680 2exeuv 2689 eupickbi 2693 2eu2ex 2700 2exeu 2703 euxfr 3653 eusvnf 5191 eusvnfb 5192 reusv2lem2 5198 reusv2lem3 5199 csbiota 6225 dffv3 6541 tz6.12c 6570 ndmfv 6575 dff3 6736 csbriota 6996 eusvobj2 7016 fnoprabg 7138 zfrep6 7519 dfac5lem5 9406 initoeu1 17104 initoeu1w 17105 initoeu2 17109 termoeu1 17111 termoeu1w 17112 grpidval 17703 0g0 17706 txcn 21922 bnj605 31791 bnj607 31800 bnj906 31814 bnj908 31815 neufal 33365 unqsym1 33384 bj-moeub 33749 moxfr 38795 eu2ndop1stv 42862 afveu 42890 afv2eu 42975 tz6.12c-afv2 42979 dfatco 42993 zrninitoringc 43842 |
Copyright terms: Public domain | W3C validator |