| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euex | Structured version Visualization version GIF version | ||
| Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2018.) (Proof shortened by BJ, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2562 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∃*wmo 2531 ∃!weu 2561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2562 |
| This theorem is referenced by: exmoeu 2574 dfeu 2588 euan 2614 euanv 2617 2exeuv 2625 eupickbi 2629 2eu2ex 2636 2exeu 2639 euxfrw 3689 euxfr 3691 eusvnf 5342 eusvnfb 5343 reusv2lem2 5349 reusv2lem3 5350 csbiota 6492 dffv3 6836 tz6.12cOLD 6867 ndmfv 6875 dff3 7054 csbriota 7341 eusvobj2 7361 fnoprabg 7492 zfrep6 7913 dfac5lem5 10056 initoeu1 17953 initoeu1w 17954 initoeu2 17958 termoeu1 17960 termoeu1w 17961 grpidval 18570 0g0 18573 zrninitoringc 20596 txcn 23546 bnj605 34890 bnj607 34899 bnj906 34913 bnj908 34914 neufal 36387 unqsym1 36406 bj-moeub 36830 moxfr 42673 onexomgt 43223 onexoegt 43226 omabs2 43314 eu2ndop1stv 47119 afveu 47147 afv2eu 47232 tz6.12c-afv2 47236 dfatco 47250 initc 49073 thincn0eu 49413 termcterm2 49496 termc2 49500 eufunclem 49503 eufunc 49504 euendfunc 49508 arweuthinc 49511 arweutermc 49512 diag1f1o 49516 diag2f1o 49519 prstchom2ALT 49546 |
| Copyright terms: Public domain | W3C validator |