![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > euex | Structured version Visualization version GIF version |
Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2018.) (Proof shortened by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2572 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1777 ∃*wmo 2541 ∃!weu 2571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2572 |
This theorem is referenced by: exmoeu 2584 dfeu 2598 euan 2624 euanv 2627 2exeuv 2635 eupickbi 2639 2eu2ex 2646 2exeu 2649 euxfrw 3743 euxfr 3745 eusvnf 5410 eusvnfb 5411 reusv2lem2 5417 reusv2lem3 5418 csbiota 6566 dffv3 6916 tz6.12cOLD 6947 ndmfv 6955 dff3 7134 csbriota 7420 eusvobj2 7440 fnoprabg 7573 zfrep6 7995 dfac5lem5 10196 initoeu1 18078 initoeu1w 18079 initoeu2 18083 termoeu1 18085 termoeu1w 18086 grpidval 18699 0g0 18702 zrninitoringc 20698 txcn 23655 bnj605 34883 bnj607 34892 bnj906 34906 bnj908 34907 neufal 36372 unqsym1 36391 bj-moeub 36815 moxfr 42648 onexomgt 43202 onexoegt 43205 omabs2 43294 eu2ndop1stv 47040 afveu 47068 afv2eu 47153 tz6.12c-afv2 47157 dfatco 47171 thincn0eu 48699 prstchom2ALT 48746 |
Copyright terms: Public domain | W3C validator |