![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > euex | Structured version Visualization version GIF version |
Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2018.) (Proof shortened by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2563 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
2 | 1 | simplbi 498 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1781 ∃*wmo 2532 ∃!weu 2562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-eu 2563 |
This theorem is referenced by: exmoeu 2575 dfeu 2589 euan 2617 euanv 2620 2exeuv 2628 eupickbi 2632 2eu2ex 2639 2exeu 2642 euxfrw 3717 euxfr 3719 eusvnf 5390 eusvnfb 5391 reusv2lem2 5397 reusv2lem3 5398 csbiota 6536 dffv3 6887 tz6.12cOLD 6918 ndmfv 6926 dff3 7101 csbriota 7380 eusvobj2 7400 fnoprabg 7530 zfrep6 7940 dfac5lem5 10121 initoeu1 17960 initoeu1w 17961 initoeu2 17965 termoeu1 17967 termoeu1w 17968 grpidval 18579 0g0 18582 txcn 23129 bnj605 33913 bnj607 33922 bnj906 33936 bnj908 33937 neufal 35286 unqsym1 35305 bj-moeub 35723 moxfr 41420 onexomgt 41980 onexoegt 41983 omabs2 42072 eu2ndop1stv 45823 afveu 45851 afv2eu 45936 tz6.12c-afv2 45940 dfatco 45954 zrninitoringc 46959 thincn0eu 47642 prstchom2ALT 47689 |
Copyright terms: Public domain | W3C validator |