| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euex | Structured version Visualization version GIF version | ||
| Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2018.) (Proof shortened by BJ, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2569 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∃*wmo 2538 ∃!weu 2568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2569 |
| This theorem is referenced by: exmoeu 2581 dfeu 2595 euan 2621 euanv 2624 2exeuv 2632 eupickbi 2636 2eu2ex 2643 2exeu 2646 euxfrw 3709 euxfr 3711 eusvnf 5367 eusvnfb 5368 reusv2lem2 5374 reusv2lem3 5375 csbiota 6529 dffv3 6877 tz6.12cOLD 6908 ndmfv 6916 dff3 7095 csbriota 7382 eusvobj2 7402 fnoprabg 7535 zfrep6 7958 dfac5lem5 10146 initoeu1 18029 initoeu1w 18030 initoeu2 18034 termoeu1 18036 termoeu1w 18037 grpidval 18644 0g0 18647 zrninitoringc 20641 txcn 23569 bnj605 34943 bnj607 34952 bnj906 34966 bnj908 34967 neufal 36429 unqsym1 36448 bj-moeub 36872 moxfr 42690 onexomgt 43240 onexoegt 43243 omabs2 43331 eu2ndop1stv 47134 afveu 47162 afv2eu 47247 tz6.12c-afv2 47251 dfatco 47265 thincn0eu 49297 termcterm2 49379 termc2 49383 eufunclem 49386 eufunc 49387 euendfunc 49391 arweuthinc 49394 arweutermc 49395 diag1f1o 49399 diag2f1o 49402 prstchom2ALT 49421 |
| Copyright terms: Public domain | W3C validator |