| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euex | Structured version Visualization version GIF version | ||
| Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2018.) (Proof shortened by BJ, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2562 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∃*wmo 2531 ∃!weu 2561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2562 |
| This theorem is referenced by: exmoeu 2574 dfeu 2588 euan 2614 euanv 2617 2exeuv 2625 eupickbi 2629 2eu2ex 2636 2exeu 2639 euxfrw 3681 euxfr 3683 eusvnf 5331 eusvnfb 5332 reusv2lem2 5338 reusv2lem3 5339 csbiota 6475 dffv3 6818 ndmfv 6855 dff3 7034 csbriota 7321 eusvobj2 7341 fnoprabg 7472 zfrep6 7890 dfac5lem5 10021 initoeu1 17918 initoeu1w 17919 initoeu2 17923 termoeu1 17925 termoeu1w 17926 grpidval 18535 0g0 18538 zrninitoringc 20561 txcn 23511 bnj605 34880 bnj607 34889 bnj906 34903 bnj908 34904 neufal 36390 unqsym1 36409 bj-moeub 36833 moxfr 42675 onexomgt 43224 onexoegt 43227 omabs2 43315 eu2ndop1stv 47119 afveu 47147 afv2eu 47232 tz6.12c-afv2 47236 dfatco 47250 initc 49086 thincn0eu 49426 termcterm2 49509 termc2 49513 eufunclem 49516 eufunc 49517 euendfunc 49521 arweuthinc 49524 arweutermc 49525 diag1f1o 49529 diag2f1o 49532 prstchom2ALT 49559 |
| Copyright terms: Public domain | W3C validator |