![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > euex | Structured version Visualization version GIF version |
Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2018.) (Proof shortened by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2564 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
2 | 1 | simplbi 499 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 ∃*wmo 2533 ∃!weu 2563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-eu 2564 |
This theorem is referenced by: exmoeu 2576 dfeu 2590 euan 2618 euanv 2621 2exeuv 2629 eupickbi 2633 2eu2ex 2640 2exeu 2643 euxfrw 3718 euxfr 3720 eusvnf 5391 eusvnfb 5392 reusv2lem2 5398 reusv2lem3 5399 csbiota 6537 dffv3 6888 tz6.12cOLD 6919 ndmfv 6927 dff3 7102 csbriota 7381 eusvobj2 7401 fnoprabg 7531 zfrep6 7941 dfac5lem5 10122 initoeu1 17961 initoeu1w 17962 initoeu2 17966 termoeu1 17968 termoeu1w 17969 grpidval 18580 0g0 18583 txcn 23130 bnj605 33918 bnj607 33927 bnj906 33941 bnj908 33942 neufal 35291 unqsym1 35310 bj-moeub 35728 moxfr 41430 onexomgt 41990 onexoegt 41993 omabs2 42082 eu2ndop1stv 45833 afveu 45861 afv2eu 45946 tz6.12c-afv2 45950 dfatco 45964 zrninitoringc 46969 thincn0eu 47652 prstchom2ALT 47699 |
Copyright terms: Public domain | W3C validator |