Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > euex | Structured version Visualization version GIF version |
Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2018.) (Proof shortened by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2570 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
2 | 1 | simplbi 498 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 ∃*wmo 2539 ∃!weu 2569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-eu 2570 |
This theorem is referenced by: exmoeu 2582 dfeu 2596 euan 2624 euanv 2627 2exeuv 2635 eupickbi 2639 2eu2ex 2646 2exeu 2649 euxfrw 3657 euxfr 3659 eusvnf 5316 eusvnfb 5317 reusv2lem2 5323 reusv2lem3 5324 csbiota 6430 dffv3 6779 tz6.12c 6808 ndmfv 6813 dff3 6985 csbriota 7257 eusvobj2 7277 fnoprabg 7406 zfrep6 7806 dfac5lem5 9892 initoeu1 17735 initoeu1w 17736 initoeu2 17740 termoeu1 17742 termoeu1w 17743 grpidval 18354 0g0 18357 txcn 22786 bnj605 32896 bnj607 32905 bnj906 32919 bnj908 32920 neufal 34604 unqsym1 34623 bj-moeub 35042 moxfr 40521 eu2ndop1stv 44628 afveu 44656 afv2eu 44741 tz6.12c-afv2 44745 dfatco 44759 zrninitoringc 45640 thincn0eu 46324 prstchom2ALT 46371 |
Copyright terms: Public domain | W3C validator |