![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > euex | Structured version Visualization version GIF version |
Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2018.) (Proof shortened by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2567 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1776 ∃*wmo 2536 ∃!weu 2566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2567 |
This theorem is referenced by: exmoeu 2579 dfeu 2593 euan 2619 euanv 2622 2exeuv 2630 eupickbi 2634 2eu2ex 2641 2exeu 2644 euxfrw 3730 euxfr 3732 eusvnf 5398 eusvnfb 5399 reusv2lem2 5405 reusv2lem3 5406 csbiota 6556 dffv3 6903 tz6.12cOLD 6934 ndmfv 6942 dff3 7120 csbriota 7403 eusvobj2 7423 fnoprabg 7556 zfrep6 7978 dfac5lem5 10165 initoeu1 18065 initoeu1w 18066 initoeu2 18070 termoeu1 18072 termoeu1w 18073 grpidval 18687 0g0 18690 zrninitoringc 20693 txcn 23650 bnj605 34900 bnj607 34909 bnj906 34923 bnj908 34924 neufal 36389 unqsym1 36408 bj-moeub 36832 moxfr 42680 onexomgt 43230 onexoegt 43233 omabs2 43322 eu2ndop1stv 47075 afveu 47103 afv2eu 47188 tz6.12c-afv2 47192 dfatco 47206 thincn0eu 48832 prstchom2ALT 48880 |
Copyright terms: Public domain | W3C validator |