Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > euex | Structured version Visualization version GIF version |
Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2018.) (Proof shortened by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2569 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 ∃*wmo 2538 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-eu 2569 |
This theorem is referenced by: exmoeu 2581 dfeu 2595 euan 2623 euanv 2626 2exeuv 2634 eupickbi 2638 2eu2ex 2645 2exeu 2648 euxfrw 3651 euxfr 3653 eusvnf 5310 eusvnfb 5311 reusv2lem2 5317 reusv2lem3 5318 csbiota 6411 dffv3 6752 tz6.12c 6781 ndmfv 6786 dff3 6958 csbriota 7228 eusvobj2 7248 fnoprabg 7375 zfrep6 7771 dfac5lem5 9814 initoeu1 17642 initoeu1w 17643 initoeu2 17647 termoeu1 17649 termoeu1w 17650 grpidval 18260 0g0 18263 txcn 22685 bnj605 32787 bnj607 32796 bnj906 32810 bnj908 32811 neufal 34522 unqsym1 34541 bj-moeub 34960 moxfr 40430 eu2ndop1stv 44504 afveu 44532 afv2eu 44617 tz6.12c-afv2 44621 dfatco 44635 zrninitoringc 45517 thincn0eu 46201 prstchom2ALT 46246 |
Copyright terms: Public domain | W3C validator |