| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euex | Structured version Visualization version GIF version | ||
| Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2018.) (Proof shortened by BJ, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2568 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∃*wmo 2537 ∃!weu 2567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2568 |
| This theorem is referenced by: exmoeu 2580 dfeu 2594 euan 2620 euanv 2623 2exeuv 2631 eupickbi 2635 2eu2ex 2642 2exeu 2645 euxfrw 3704 euxfr 3706 eusvnf 5362 eusvnfb 5363 reusv2lem2 5369 reusv2lem3 5370 csbiota 6523 dffv3 6871 tz6.12cOLD 6902 ndmfv 6910 dff3 7089 csbriota 7375 eusvobj2 7395 fnoprabg 7528 zfrep6 7951 dfac5lem5 10139 initoeu1 18022 initoeu1w 18023 initoeu2 18027 termoeu1 18029 termoeu1w 18030 grpidval 18637 0g0 18640 zrninitoringc 20634 txcn 23562 bnj605 34884 bnj607 34893 bnj906 34907 bnj908 34908 neufal 36370 unqsym1 36389 bj-moeub 36813 moxfr 42662 onexomgt 43212 onexoegt 43215 omabs2 43303 eu2ndop1stv 47102 afveu 47130 afv2eu 47215 tz6.12c-afv2 47219 dfatco 47233 thincn0eu 49265 termcterm2 49347 termc2 49351 eufunclem 49354 eufunc 49355 euendfunc 49359 arweuthinc 49362 arweutermc 49363 diag1f1o 49367 diag2f1o 49370 prstchom2ALT 49389 |
| Copyright terms: Public domain | W3C validator |