| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euimmo | Structured version Visualization version GIF version | ||
| Description: Existential uniqueness implies uniqueness through reverse implication. (Contributed by NM, 22-Apr-1995.) |
| Ref | Expression |
|---|---|
| euimmo | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eumo 2578 | . 2 ⊢ (∃!𝑥𝜓 → ∃*𝑥𝜓) | |
| 2 | moim 2544 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) | |
| 3 | 1, 2 | syl5 34 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃*wmo 2538 ∃!weu 2568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 df-eu 2569 |
| This theorem is referenced by: euim 2617 2eumo 2642 moeq3 3700 reuss2 4306 |
| Copyright terms: Public domain | W3C validator |