Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > euimmo | Structured version Visualization version GIF version |
Description: Existential uniqueness implies uniqueness through reverse implication. (Contributed by NM, 22-Apr-1995.) |
Ref | Expression |
---|---|
euimmo | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2597 | . 2 ⊢ (∃!𝑥𝜓 → ∃*𝑥𝜓) | |
2 | moim 2561 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) | |
3 | 1, 2 | syl5 34 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1536 ∃*wmo 2555 ∃!weu 2587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-mo 2557 df-eu 2588 |
This theorem is referenced by: euim 2637 euimOLD 2638 2eumo 2663 moeq3 3626 reuss2 4217 |
Copyright terms: Public domain | W3C validator |