|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > euimmo | Structured version Visualization version GIF version | ||
| Description: Existential uniqueness implies uniqueness through reverse implication. (Contributed by NM, 22-Apr-1995.) | 
| Ref | Expression | 
|---|---|
| euimmo | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eumo 2577 | . 2 ⊢ (∃!𝑥𝜓 → ∃*𝑥𝜓) | |
| 2 | moim 2543 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) | |
| 3 | 1, 2 | syl5 34 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1537 ∃*wmo 2537 ∃!weu 2567 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-mo 2539 df-eu 2568 | 
| This theorem is referenced by: euim 2616 2eumo 2641 moeq3 3717 reuss2 4325 | 
| Copyright terms: Public domain | W3C validator |