| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eumo | Structured version Visualization version GIF version | ||
| Description: Existential uniqueness implies uniqueness. (Contributed by NM, 23-Mar-1995.) |
| Ref | Expression |
|---|---|
| eumo | ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2569 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∃*wmo 2538 ∃!weu 2568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2569 |
| This theorem is referenced by: eumoi 2579 euimmo 2616 moaneu 2623 2exeuv 2632 eupick 2633 2eumo 2642 2exeu 2646 2eu2 2653 2eu5 2656 moeq3 3700 euabex 5441 nfunsn 6923 dff3 7095 fnoprabg 7535 zfrep6 7958 nqerf 10949 f1otrspeq 19433 uptx 23568 txcn 23569 pm14.12 44412 euendfunc 49378 arweuthinc 49381 arweutermc 49382 mndtcbas2 49427 |
| Copyright terms: Public domain | W3C validator |