![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eumo | Structured version Visualization version GIF version |
Description: Existential uniqueness implies uniqueness. (Contributed by NM, 23-Mar-1995.) |
Ref | Expression |
---|---|
eumo | ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2572 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1777 ∃*wmo 2541 ∃!weu 2571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2572 |
This theorem is referenced by: eumoi 2582 euimmo 2619 moaneu 2626 2exeuv 2635 eupick 2636 2eumo 2645 2exeu 2649 2eu2 2656 2eu5 2659 moeq3 3734 euabex 5481 nfunsn 6962 dff3 7134 fnoprabg 7573 zfrep6 7995 nqerf 10999 f1otrspeq 19489 uptx 23654 txcn 23655 pm14.12 44390 mndtcbas2 48756 |
Copyright terms: Public domain | W3C validator |