![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eumo | Structured version Visualization version GIF version |
Description: Existential uniqueness implies uniqueness. (Contributed by NM, 23-Mar-1995.) |
Ref | Expression |
---|---|
eumo | ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2562 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1780 ∃*wmo 2531 ∃!weu 2561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-eu 2562 |
This theorem is referenced by: eumoi 2572 euimmo 2611 moaneu 2618 2exeuv 2627 eupick 2628 2eumo 2637 2exeu 2641 2eu2 2647 2eu5 2650 moeq3 3708 euabex 5461 nfunsn 6933 dff3 7101 fnoprabg 7534 zfrep6 7945 nqerf 10931 f1otrspeq 19363 uptx 23448 txcn 23449 pm14.12 43642 mndtcbas2 47870 |
Copyright terms: Public domain | W3C validator |