| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eumo | Structured version Visualization version GIF version | ||
| Description: Existential uniqueness implies uniqueness. (Contributed by NM, 23-Mar-1995.) |
| Ref | Expression |
|---|---|
| eumo | ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2566 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 ∃*wmo 2535 ∃!weu 2565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2566 |
| This theorem is referenced by: eumoi 2576 euimmo 2613 moaneu 2620 2exeuv 2629 eupick 2630 2eumo 2639 2exeu 2643 2eu2 2650 2eu5 2653 moeq3 3667 euabex 5406 nfunsn 6870 dff3 7042 fnoprabg 7478 zfrep6 7896 nqerf 10832 f1otrspeq 19367 uptx 23560 txcn 23561 pm14.12 44578 euendfunc 49687 arweuthinc 49690 arweutermc 49691 mndtcbas2 49744 |
| Copyright terms: Public domain | W3C validator |