MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eumo Structured version   Visualization version   GIF version

Theorem eumo 2579
Description: Existential uniqueness implies uniqueness. (Contributed by NM, 23-Mar-1995.)
Assertion
Ref Expression
eumo (∃!𝑥𝜑 → ∃*𝑥𝜑)

Proof of Theorem eumo
StepHypRef Expression
1 df-eu 2570 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
21simprbi 496 1 (∃!𝑥𝜑 → ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1785  ∃*wmo 2539  ∃!weu 2569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-eu 2570
This theorem is referenced by:  eumoi  2580  euimmo  2619  moaneu  2626  2exeuv  2635  eupick  2636  2eumo  2645  2exeu  2649  2eu2  2655  2eu5  2658  moeq3  3650  euabex  5378  nfunsn  6805  dff3  6970  fnoprabg  7388  zfrep6  7784  nqerf  10670  f1otrspeq  19036  uptx  22757  txcn  22758  pm14.12  41992  mndtcbas2  46322
  Copyright terms: Public domain W3C validator