Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eumo | Structured version Visualization version GIF version |
Description: Existential uniqueness implies uniqueness. (Contributed by NM, 23-Mar-1995.) |
Ref | Expression |
---|---|
eumo | ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2571 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
2 | 1 | simprbi 500 | 1 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1786 ∃*wmo 2539 ∃!weu 2570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-eu 2571 |
This theorem is referenced by: eumoi 2581 euimmo 2620 moaneu 2627 2exeuv 2636 eupick 2637 2eumo 2646 2exeu 2650 2eu2 2656 2eu5 2659 moeq3 3616 euabex 5329 nfunsn 6723 dff3 6888 fnoprabg 7301 zfrep6 7693 nqerf 10442 f1otrspeq 18705 uptx 22388 txcn 22389 pm14.12 41617 |
Copyright terms: Public domain | W3C validator |