| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eumo | Structured version Visualization version GIF version | ||
| Description: Existential uniqueness implies uniqueness. (Contributed by NM, 23-Mar-1995.) |
| Ref | Expression |
|---|---|
| eumo | ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2563 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∃*wmo 2532 ∃!weu 2562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2563 |
| This theorem is referenced by: eumoi 2573 euimmo 2610 moaneu 2617 2exeuv 2626 eupick 2627 2eumo 2636 2exeu 2640 2eu2 2647 2eu5 2650 moeq3 3686 euabex 5424 nfunsn 6903 dff3 7075 fnoprabg 7515 zfrep6 7936 nqerf 10890 f1otrspeq 19384 uptx 23519 txcn 23520 pm14.12 44417 euendfunc 49519 arweuthinc 49522 arweutermc 49523 mndtcbas2 49576 |
| Copyright terms: Public domain | W3C validator |