Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eumo | Structured version Visualization version GIF version |
Description: Existential uniqueness implies uniqueness. (Contributed by NM, 23-Mar-1995.) |
Ref | Expression |
---|---|
eumo | ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2570 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1785 ∃*wmo 2539 ∃!weu 2569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-eu 2570 |
This theorem is referenced by: eumoi 2580 euimmo 2619 moaneu 2626 2exeuv 2635 eupick 2636 2eumo 2645 2exeu 2649 2eu2 2655 2eu5 2658 moeq3 3650 euabex 5378 nfunsn 6805 dff3 6970 fnoprabg 7388 zfrep6 7784 nqerf 10670 f1otrspeq 19036 uptx 22757 txcn 22758 pm14.12 41992 mndtcbas2 46322 |
Copyright terms: Public domain | W3C validator |