MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eumo Structured version   Visualization version   GIF version

Theorem eumo 2580
Description: Existential uniqueness implies uniqueness. (Contributed by NM, 23-Mar-1995.)
Assertion
Ref Expression
eumo (∃!𝑥𝜑 → ∃*𝑥𝜑)

Proof of Theorem eumo
StepHypRef Expression
1 df-eu 2571 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
21simprbi 500 1 (∃!𝑥𝜑 → ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1786  ∃*wmo 2539  ∃!weu 2570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-eu 2571
This theorem is referenced by:  eumoi  2581  euimmo  2620  moaneu  2627  2exeuv  2636  eupick  2637  2eumo  2646  2exeu  2650  2eu2  2656  2eu5  2659  moeq3  3616  euabex  5329  nfunsn  6723  dff3  6888  fnoprabg  7301  zfrep6  7693  nqerf  10442  f1otrspeq  18705  uptx  22388  txcn  22389  pm14.12  41617
  Copyright terms: Public domain W3C validator