| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eumo | Structured version Visualization version GIF version | ||
| Description: Existential uniqueness implies uniqueness. (Contributed by NM, 23-Mar-1995.) |
| Ref | Expression |
|---|---|
| eumo | ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2562 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∃*wmo 2531 ∃!weu 2561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2562 |
| This theorem is referenced by: eumoi 2572 euimmo 2609 moaneu 2616 2exeuv 2625 eupick 2626 2eumo 2635 2exeu 2639 2eu2 2646 2eu5 2649 moeq3 3680 euabex 5416 nfunsn 6882 dff3 7054 fnoprabg 7492 zfrep6 7913 nqerf 10859 f1otrspeq 19353 uptx 23488 txcn 23489 pm14.12 44383 euendfunc 49488 arweuthinc 49491 arweutermc 49492 mndtcbas2 49545 |
| Copyright terms: Public domain | W3C validator |