MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eumo Structured version   Visualization version   GIF version

Theorem eumo 2576
Description: Existential uniqueness implies uniqueness. (Contributed by NM, 23-Mar-1995.)
Assertion
Ref Expression
eumo (∃!𝑥𝜑 → ∃*𝑥𝜑)

Proof of Theorem eumo
StepHypRef Expression
1 df-eu 2567 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
21simprbi 496 1 (∃!𝑥𝜑 → ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1776  ∃*wmo 2536  ∃!weu 2566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-eu 2567
This theorem is referenced by:  eumoi  2577  euimmo  2614  moaneu  2621  2exeuv  2630  eupick  2631  2eumo  2640  2exeu  2644  2eu2  2651  2eu5  2654  moeq3  3721  euabex  5472  nfunsn  6949  dff3  7120  fnoprabg  7556  zfrep6  7978  nqerf  10968  f1otrspeq  19480  uptx  23649  txcn  23650  pm14.12  44417  mndtcbas2  48892
  Copyright terms: Public domain W3C validator