| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eumo | Structured version Visualization version GIF version | ||
| Description: Existential uniqueness implies uniqueness. (Contributed by NM, 23-Mar-1995.) |
| Ref | Expression |
|---|---|
| eumo | ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2562 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∃*wmo 2531 ∃!weu 2561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2562 |
| This theorem is referenced by: eumoi 2572 euimmo 2609 moaneu 2616 2exeuv 2625 eupick 2626 2eumo 2635 2exeu 2639 2eu2 2646 2eu5 2649 moeq3 3674 euabex 5408 nfunsn 6866 dff3 7038 fnoprabg 7476 zfrep6 7897 nqerf 10843 f1otrspeq 19344 uptx 23528 txcn 23529 pm14.12 44397 euendfunc 49515 arweuthinc 49518 arweutermc 49519 mndtcbas2 49572 |
| Copyright terms: Public domain | W3C validator |