| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eumo | Structured version Visualization version GIF version | ||
| Description: Existential uniqueness implies uniqueness. (Contributed by NM, 23-Mar-1995.) |
| Ref | Expression |
|---|---|
| eumo | ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2562 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∃*wmo 2531 ∃!weu 2561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2562 |
| This theorem is referenced by: eumoi 2572 euimmo 2609 moaneu 2616 2exeuv 2625 eupick 2626 2eumo 2635 2exeu 2639 2eu2 2646 2eu5 2649 moeq3 3683 euabex 5421 nfunsn 6900 dff3 7072 fnoprabg 7512 zfrep6 7933 nqerf 10883 f1otrspeq 19377 uptx 23512 txcn 23513 pm14.12 44410 euendfunc 49515 arweuthinc 49518 arweutermc 49519 mndtcbas2 49572 |
| Copyright terms: Public domain | W3C validator |