![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eumo | Structured version Visualization version GIF version |
Description: Existential uniqueness implies uniqueness. (Contributed by NM, 23-Mar-1995.) |
Ref | Expression |
---|---|
eumo | ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2567 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1776 ∃*wmo 2536 ∃!weu 2566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2567 |
This theorem is referenced by: eumoi 2577 euimmo 2614 moaneu 2621 2exeuv 2630 eupick 2631 2eumo 2640 2exeu 2644 2eu2 2651 2eu5 2654 moeq3 3721 euabex 5472 nfunsn 6949 dff3 7120 fnoprabg 7556 zfrep6 7978 nqerf 10968 f1otrspeq 19480 uptx 23649 txcn 23650 pm14.12 44417 mndtcbas2 48892 |
Copyright terms: Public domain | W3C validator |