MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eumo Structured version   Visualization version   GIF version

Theorem eumo 2572
Description: Existential uniqueness implies uniqueness. (Contributed by NM, 23-Mar-1995.)
Assertion
Ref Expression
eumo (∃!𝑥𝜑 → ∃*𝑥𝜑)

Proof of Theorem eumo
StepHypRef Expression
1 df-eu 2563 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
21simprbi 497 1 (∃!𝑥𝜑 → ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1781  ∃*wmo 2532  ∃!weu 2562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-eu 2563
This theorem is referenced by:  eumoi  2573  euimmo  2612  moaneu  2619  2exeuv  2628  eupick  2629  2eumo  2638  2exeu  2642  2eu2  2648  2eu5  2651  moeq3  3708  euabex  5461  nfunsn  6933  dff3  7101  fnoprabg  7530  zfrep6  7940  nqerf  10924  f1otrspeq  19314  uptx  23128  txcn  23129  pm14.12  43170  mndtcbas2  47699
  Copyright terms: Public domain W3C validator