| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eumo | Structured version Visualization version GIF version | ||
| Description: Existential uniqueness implies uniqueness. (Contributed by NM, 23-Mar-1995.) |
| Ref | Expression |
|---|---|
| eumo | ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2564 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 ∃*wmo 2533 ∃!weu 2563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2564 |
| This theorem is referenced by: eumoi 2574 euimmo 2611 moaneu 2618 2exeuv 2627 eupick 2628 2eumo 2637 2exeu 2641 2eu2 2648 2eu5 2651 moeq3 3671 euabex 5401 nfunsn 6861 dff3 7033 fnoprabg 7469 zfrep6 7887 nqerf 10821 f1otrspeq 19360 uptx 23541 txcn 23542 pm14.12 44460 euendfunc 49564 arweuthinc 49567 arweutermc 49568 mndtcbas2 49621 |
| Copyright terms: Public domain | W3C validator |