|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2euex | Structured version Visualization version GIF version | ||
| Description: Double quantification with existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 2376. Use the weaker 2euexv 2630 when possible. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| 2euex | ⊢ (∃!𝑥∃𝑦𝜑 → ∃𝑦∃!𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-eu 2568 | . 2 ⊢ (∃!𝑥∃𝑦𝜑 ↔ (∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑)) | |
| 2 | excom 2161 | . . . 4 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) | |
| 3 | nfe1 2149 | . . . . . 6 ⊢ Ⅎ𝑦∃𝑦𝜑 | |
| 4 | 3 | nfmo 2561 | . . . . 5 ⊢ Ⅎ𝑦∃*𝑥∃𝑦𝜑 | 
| 5 | 19.8a 2180 | . . . . . . 7 ⊢ (𝜑 → ∃𝑦𝜑) | |
| 6 | 5 | moimi 2544 | . . . . . 6 ⊢ (∃*𝑥∃𝑦𝜑 → ∃*𝑥𝜑) | 
| 7 | moeu 2582 | . . . . . 6 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
| 8 | 6, 7 | sylib 218 | . . . . 5 ⊢ (∃*𝑥∃𝑦𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑)) | 
| 9 | 4, 8 | eximd 2215 | . . . 4 ⊢ (∃*𝑥∃𝑦𝜑 → (∃𝑦∃𝑥𝜑 → ∃𝑦∃!𝑥𝜑)) | 
| 10 | 2, 9 | biimtrid 242 | . . 3 ⊢ (∃*𝑥∃𝑦𝜑 → (∃𝑥∃𝑦𝜑 → ∃𝑦∃!𝑥𝜑)) | 
| 11 | 10 | impcom 407 | . 2 ⊢ ((∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑) → ∃𝑦∃!𝑥𝜑) | 
| 12 | 1, 11 | sylbi 217 | 1 ⊢ (∃!𝑥∃𝑦𝜑 → ∃𝑦∃!𝑥𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1778 ∃*wmo 2537 ∃!weu 2567 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2376 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-mo 2539 df-eu 2568 | 
| This theorem is referenced by: 2exeu 2645 | 
| Copyright terms: Public domain | W3C validator |