MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2euex Structured version   Visualization version   GIF version

Theorem 2euex 2672
Description: Double quantification with existential uniqueness. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
2euex (∃!𝑥𝑦𝜑 → ∃𝑦∃!𝑥𝜑)

Proof of Theorem 2euex
StepHypRef Expression
1 df-eu 2584 . 2 (∃!𝑥𝑦𝜑 ↔ (∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑))
2 excom 2098 . . . 4 (∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
3 nfe1 2087 . . . . . 6 𝑦𝑦𝜑
43nfmo 2574 . . . . 5 𝑦∃*𝑥𝑦𝜑
5 19.8a 2109 . . . . . . 7 (𝜑 → ∃𝑦𝜑)
65moimi 2553 . . . . . 6 (∃*𝑥𝑦𝜑 → ∃*𝑥𝜑)
7 moeu 2602 . . . . . 6 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
86, 7sylib 210 . . . . 5 (∃*𝑥𝑦𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑))
94, 8eximd 2146 . . . 4 (∃*𝑥𝑦𝜑 → (∃𝑦𝑥𝜑 → ∃𝑦∃!𝑥𝜑))
102, 9syl5bi 234 . . 3 (∃*𝑥𝑦𝜑 → (∃𝑥𝑦𝜑 → ∃𝑦∃!𝑥𝜑))
1110impcom 399 . 2 ((∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑) → ∃𝑦∃!𝑥𝜑)
121, 11sylbi 209 1 (∃!𝑥𝑦𝜑 → ∃𝑦∃!𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  wex 1742  ∃*wmo 2545  ∃!weu 2583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747  df-mo 2547  df-eu 2584
This theorem is referenced by:  2exeu  2677
  Copyright terms: Public domain W3C validator