| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfra2w | Structured version Visualization version GIF version | ||
| Description: Similar to Lemma 24 of [Monk2] p. 114, except that quantification is restricted. Once derived from hbra2VD 44951. Version of nfra2 3342 with a disjoint variable condition not requiring ax-13 2372. (Contributed by Alan Sare, 31-Dec-2011.) Reduce axiom usage. (Revised by GG, 24-Sep-2024.) (Proof shortened by Wolf Lammen, 3-Jan-2025.) |
| Ref | Expression |
|---|---|
| nfra2w | ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r2al 3168 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | |
| 2 | nfa2 2179 | . 2 ⊢ Ⅎ𝑦∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
| 3 | 1, 2 | nfxfr 1854 | 1 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 Ⅎwnf 1784 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-10 2144 ax-11 2160 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-ral 3048 |
| This theorem is referenced by: invdisj 5075 reusv3 5341 dedekind 11276 dedekindle 11277 mreexexd 17554 gsummatr01lem4 22573 ordtconnlem1 33937 bnj1379 34842 tratrb 44628 islptre 45718 sprsymrelfo 47596 |
| Copyright terms: Public domain | W3C validator |