MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfra2w Structured version   Visualization version   GIF version

Theorem nfra2w 3154
Description: Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 42480. Version of nfra2 3157 with a disjoint variable condition not requiring ax-13 2372. (Contributed by Alan Sare, 31-Dec-2011.) (Revised by Gino Giotto, 24-Sep-2024.) (Proof shortened by Wolf Lammen, 31-Oct-2024.)
Assertion
Ref Expression
nfra2w 𝑦𝑥𝐴𝑦𝐵 𝜑
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem nfra2w
StepHypRef Expression
1 r2al 3118 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
2 alcom 2156 . . 3 (∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑) ↔ ∀𝑦𝑥((𝑥𝐴𝑦𝐵) → 𝜑))
31, 2bitri 274 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝑥((𝑥𝐴𝑦𝐵) → 𝜑))
4 nfa1 2148 . 2 𝑦𝑦𝑥((𝑥𝐴𝑦𝐵) → 𝜑)
53, 4nfxfr 1855 1 𝑦𝑥𝐴𝑦𝐵 𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537  wnf 1786  wcel 2106  wral 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-10 2137  ax-11 2154
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-ral 3069
This theorem is referenced by:  invdisj  5058  reusv3  5328  dedekind  11138  dedekindle  11139  mreexexd  17357  gsummatr01lem4  21807  ordtconnlem1  31874  bnj1379  32810  tratrb  42156  islptre  43160  sprsymrelfo  44949
  Copyright terms: Public domain W3C validator