Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfra2w | Structured version Visualization version GIF version |
Description: Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 41939. Version of nfra2 3156 with a disjoint variable condition, which does not require ax-13 2379. (Contributed by Alan Sare, 31-Dec-2011.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfra2w | ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2919 | . 2 ⊢ Ⅎ𝑦𝐴 | |
2 | nfra1 3147 | . 2 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 𝜑 | |
3 | 1, 2 | nfralw 3153 | 1 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1785 ∀wral 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-nf 1786 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 |
This theorem is referenced by: invdisj 5016 reusv3 5274 dedekind 10841 dedekindle 10842 mreexexd 16977 gsummatr01lem4 21358 ordtconnlem1 31395 bnj1379 32330 no3indslem 33662 tratrb 41615 islptre 42627 sprsymrelfo 44382 |
Copyright terms: Public domain | W3C validator |