Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfra2w Structured version   Visualization version   GIF version

Theorem nfra2w 3155
 Description: Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 41939. Version of nfra2 3156 with a disjoint variable condition, which does not require ax-13 2379. (Contributed by Alan Sare, 31-Dec-2011.) (Revised by Gino Giotto, 10-Jan-2024.)
Assertion
Ref Expression
nfra2w 𝑦𝑥𝐴𝑦𝐵 𝜑
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem nfra2w
StepHypRef Expression
1 nfcv 2919 . 2 𝑦𝐴
2 nfra1 3147 . 2 𝑦𝑦𝐵 𝜑
31, 2nfralw 3153 1 𝑦𝑥𝐴𝑦𝐵 𝜑
 Colors of variables: wff setvar class Syntax hints:  Ⅎwnf 1785  ∀wral 3070 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075 This theorem is referenced by:  invdisj  5016  reusv3  5274  dedekind  10841  dedekindle  10842  mreexexd  16977  gsummatr01lem4  21358  ordtconnlem1  31395  bnj1379  32330  no3indslem  33662  tratrb  41615  islptre  42627  sprsymrelfo  44382
 Copyright terms: Public domain W3C validator