| Step | Hyp | Ref
| Expression |
| 1 | | df-1o 8506 |
. . . 4
⊢
1o = suc ∅ |
| 2 | 1 | fveq2i 6909 |
. . 3
⊢ (𝑆‘1o) = (𝑆‘suc
∅) |
| 3 | 2 | a1i 11 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘1o) = (𝑆‘suc ∅)) |
| 4 | | peano1 7910 |
. . 3
⊢ ∅
∈ ω |
| 5 | | satfv1.s |
. . . 4
⊢ 𝑆 = (𝑀 Sat 𝐸) |
| 6 | 5 | satfvsuc 35366 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ ∅ ∈ ω) → (𝑆‘suc ∅) = ((𝑆‘∅) ∪
{〈𝑥, 𝑦〉 ∣ ∃𝑜 ∈ (𝑆‘∅)(∃𝑝 ∈ (𝑆‘∅)(𝑥 = ((1st ‘𝑜)⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑜)
∩ (2nd ‘𝑝)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(1st ‘𝑜) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ (2nd ‘𝑜)}))})) |
| 7 | 4, 6 | mp3an3 1452 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘suc ∅) = ((𝑆‘∅) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑜 ∈ (𝑆‘∅)(∃𝑝 ∈ (𝑆‘∅)(𝑥 = ((1st ‘𝑜)⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑜)
∩ (2nd ‘𝑝)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(1st ‘𝑜) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ (2nd ‘𝑜)}))})) |
| 8 | 5 | satfv0 35363 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘∅) = {〈𝑒, 𝑏〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})}) |
| 9 | 8 | rexeqdv 3327 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (∃𝑜 ∈ (𝑆‘∅)(∃𝑝 ∈ (𝑆‘∅)(𝑥 = ((1st ‘𝑜)⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑜)
∩ (2nd ‘𝑝)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(1st ‘𝑜) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ (2nd ‘𝑜)})) ↔ ∃𝑜 ∈ {〈𝑒, 𝑏〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})} (∃𝑝 ∈ (𝑆‘∅)(𝑥 = ((1st ‘𝑜)⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑜)
∩ (2nd ‘𝑝)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(1st ‘𝑜) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ (2nd ‘𝑜)})))) |
| 10 | | eqid 2737 |
. . . . . . 7
⊢
{〈𝑒, 𝑏〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})} = {〈𝑒, 𝑏〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})} |
| 11 | | vex 3484 |
. . . . . . . . . . . . 13
⊢ 𝑒 ∈ V |
| 12 | | vex 3484 |
. . . . . . . . . . . . 13
⊢ 𝑏 ∈ V |
| 13 | 11, 12 | op1std 8024 |
. . . . . . . . . . . 12
⊢ (𝑜 = 〈𝑒, 𝑏〉 → (1st ‘𝑜) = 𝑒) |
| 14 | 13 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ (𝑜 = 〈𝑒, 𝑏〉 → ((1st ‘𝑜)⊼𝑔(1st
‘𝑝)) = (𝑒⊼𝑔(1st
‘𝑝))) |
| 15 | 14 | eqeq2d 2748 |
. . . . . . . . . 10
⊢ (𝑜 = 〈𝑒, 𝑏〉 → (𝑥 = ((1st ‘𝑜)⊼𝑔(1st
‘𝑝)) ↔ 𝑥 = (𝑒⊼𝑔(1st
‘𝑝)))) |
| 16 | 11, 12 | op2ndd 8025 |
. . . . . . . . . . . . 13
⊢ (𝑜 = 〈𝑒, 𝑏〉 → (2nd ‘𝑜) = 𝑏) |
| 17 | 16 | ineq1d 4219 |
. . . . . . . . . . . 12
⊢ (𝑜 = 〈𝑒, 𝑏〉 → ((2nd ‘𝑜) ∩ (2nd
‘𝑝)) = (𝑏 ∩ (2nd
‘𝑝))) |
| 18 | 17 | difeq2d 4126 |
. . . . . . . . . . 11
⊢ (𝑜 = 〈𝑒, 𝑏〉 → ((𝑀 ↑m ω) ∖
((2nd ‘𝑜)
∩ (2nd ‘𝑝))) = ((𝑀 ↑m ω) ∖ (𝑏 ∩ (2nd
‘𝑝)))) |
| 19 | 18 | eqeq2d 2748 |
. . . . . . . . . 10
⊢ (𝑜 = 〈𝑒, 𝑏〉 → (𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑜)
∩ (2nd ‘𝑝))) ↔ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ (2nd
‘𝑝))))) |
| 20 | 15, 19 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑜 = 〈𝑒, 𝑏〉 → ((𝑥 = ((1st ‘𝑜)⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑜)
∩ (2nd ‘𝑝)))) ↔ (𝑥 = (𝑒⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ (2nd
‘𝑝)))))) |
| 21 | 20 | rexbidv 3179 |
. . . . . . . 8
⊢ (𝑜 = 〈𝑒, 𝑏〉 → (∃𝑝 ∈ (𝑆‘∅)(𝑥 = ((1st ‘𝑜)⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑜)
∩ (2nd ‘𝑝)))) ↔ ∃𝑝 ∈ (𝑆‘∅)(𝑥 = (𝑒⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ (2nd
‘𝑝)))))) |
| 22 | | eqidd 2738 |
. . . . . . . . . . . 12
⊢ (𝑜 = 〈𝑒, 𝑏〉 → 𝑛 = 𝑛) |
| 23 | 22, 13 | goaleq12d 35356 |
. . . . . . . . . . 11
⊢ (𝑜 = 〈𝑒, 𝑏〉 →
∀𝑔𝑛(1st ‘𝑜) = ∀𝑔𝑛𝑒) |
| 24 | 23 | eqeq2d 2748 |
. . . . . . . . . 10
⊢ (𝑜 = 〈𝑒, 𝑏〉 → (𝑥 = ∀𝑔𝑛(1st ‘𝑜) ↔ 𝑥 = ∀𝑔𝑛𝑒)) |
| 25 | 16 | eleq2d 2827 |
. . . . . . . . . . . . 13
⊢ (𝑜 = 〈𝑒, 𝑏〉 → (({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ (2nd ‘𝑜) ↔ ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏)) |
| 26 | 25 | ralbidv 3178 |
. . . . . . . . . . . 12
⊢ (𝑜 = 〈𝑒, 𝑏〉 → (∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ (2nd ‘𝑜) ↔ ∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏)) |
| 27 | 26 | rabbidv 3444 |
. . . . . . . . . . 11
⊢ (𝑜 = 〈𝑒, 𝑏〉 → {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ (2nd ‘𝑜)} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}) |
| 28 | 27 | eqeq2d 2748 |
. . . . . . . . . 10
⊢ (𝑜 = 〈𝑒, 𝑏〉 → (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ (2nd ‘𝑜)} ↔ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏})) |
| 29 | 24, 28 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑜 = 〈𝑒, 𝑏〉 → ((𝑥 = ∀𝑔𝑛(1st ‘𝑜) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ (2nd ‘𝑜)}) ↔ (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))) |
| 30 | 29 | rexbidv 3179 |
. . . . . . . 8
⊢ (𝑜 = 〈𝑒, 𝑏〉 → (∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(1st ‘𝑜) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ (2nd ‘𝑜)}) ↔ ∃𝑛 ∈ ω (𝑥 =
∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))) |
| 31 | 21, 30 | orbi12d 919 |
. . . . . . 7
⊢ (𝑜 = 〈𝑒, 𝑏〉 → ((∃𝑝 ∈ (𝑆‘∅)(𝑥 = ((1st ‘𝑜)⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑜)
∩ (2nd ‘𝑝)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(1st ‘𝑜) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ (2nd ‘𝑜)})) ↔ (∃𝑝 ∈ (𝑆‘∅)(𝑥 = (𝑒⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ (2nd
‘𝑝)))) ∨
∃𝑛 ∈ ω
(𝑥 =
∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏})))) |
| 32 | 10, 31 | rexopabb 5533 |
. . . . . 6
⊢
(∃𝑜 ∈
{〈𝑒, 𝑏〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})} (∃𝑝 ∈ (𝑆‘∅)(𝑥 = ((1st ‘𝑜)⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑜)
∩ (2nd ‘𝑝)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(1st ‘𝑜) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ (2nd ‘𝑜)})) ↔ ∃𝑒∃𝑏(∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑝 ∈ (𝑆‘∅)(𝑥 = (𝑒⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ (2nd
‘𝑝)))) ∨
∃𝑛 ∈ ω
(𝑥 =
∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏})))) |
| 33 | 9, 32 | bitrdi 287 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (∃𝑜 ∈ (𝑆‘∅)(∃𝑝 ∈ (𝑆‘∅)(𝑥 = ((1st ‘𝑜)⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑜)
∩ (2nd ‘𝑝)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(1st ‘𝑜) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ (2nd ‘𝑜)})) ↔ ∃𝑒∃𝑏(∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑝 ∈ (𝑆‘∅)(𝑥 = (𝑒⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ (2nd
‘𝑝)))) ∨
∃𝑛 ∈ ω
(𝑥 =
∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))))) |
| 34 | 5 | satfv0 35363 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘∅) = {〈𝑐, 𝑑〉 ∣ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)})}) |
| 35 | 34 | rexeqdv 3327 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (∃𝑝 ∈ (𝑆‘∅)(𝑥 = (𝑒⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ (2nd
‘𝑝)))) ↔
∃𝑝 ∈
{〈𝑐, 𝑑〉 ∣ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)})} (𝑥 = (𝑒⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ (2nd
‘𝑝)))))) |
| 36 | | eqid 2737 |
. . . . . . . . . . 11
⊢
{〈𝑐, 𝑑〉 ∣ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)})} = {〈𝑐, 𝑑〉 ∣ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)})} |
| 37 | | vex 3484 |
. . . . . . . . . . . . . . 15
⊢ 𝑐 ∈ V |
| 38 | | vex 3484 |
. . . . . . . . . . . . . . 15
⊢ 𝑑 ∈ V |
| 39 | 37, 38 | op1std 8024 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = 〈𝑐, 𝑑〉 → (1st ‘𝑝) = 𝑐) |
| 40 | 39 | oveq2d 7447 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 〈𝑐, 𝑑〉 → (𝑒⊼𝑔(1st
‘𝑝)) = (𝑒⊼𝑔𝑐)) |
| 41 | 40 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢ (𝑝 = 〈𝑐, 𝑑〉 → (𝑥 = (𝑒⊼𝑔(1st
‘𝑝)) ↔ 𝑥 = (𝑒⊼𝑔𝑐))) |
| 42 | 37, 38 | op2ndd 8025 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = 〈𝑐, 𝑑〉 → (2nd ‘𝑝) = 𝑑) |
| 43 | 42 | ineq2d 4220 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = 〈𝑐, 𝑑〉 → (𝑏 ∩ (2nd ‘𝑝)) = (𝑏 ∩ 𝑑)) |
| 44 | 43 | difeq2d 4126 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 〈𝑐, 𝑑〉 → ((𝑀 ↑m ω) ∖ (𝑏 ∩ (2nd
‘𝑝))) = ((𝑀 ↑m ω)
∖ (𝑏 ∩ 𝑑))) |
| 45 | 44 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢ (𝑝 = 〈𝑐, 𝑑〉 → (𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ (2nd
‘𝑝))) ↔ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) |
| 46 | 41, 45 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑝 = 〈𝑐, 𝑑〉 → ((𝑥 = (𝑒⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ (2nd
‘𝑝)))) ↔ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑))))) |
| 47 | 36, 46 | rexopabb 5533 |
. . . . . . . . . 10
⊢
(∃𝑝 ∈
{〈𝑐, 𝑑〉 ∣ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)})} (𝑥 = (𝑒⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ (2nd
‘𝑝)))) ↔
∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑))))) |
| 48 | 35, 47 | bitrdi 287 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (∃𝑝 ∈ (𝑆‘∅)(𝑥 = (𝑒⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ (2nd
‘𝑝)))) ↔
∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))))) |
| 49 | 48 | orbi1d 917 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((∃𝑝 ∈ (𝑆‘∅)(𝑥 = (𝑒⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ (2nd
‘𝑝)))) ∨
∃𝑛 ∈ ω
(𝑥 =
∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏})) ↔ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏})))) |
| 50 | 49 | anbi2d 630 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑝 ∈ (𝑆‘∅)(𝑥 = (𝑒⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ (2nd
‘𝑝)))) ∨
∃𝑛 ∈ ω
(𝑥 =
∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))) ↔ (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))))) |
| 51 | 50 | 2exbidv 1924 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (∃𝑒∃𝑏(∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑝 ∈ (𝑆‘∅)(𝑥 = (𝑒⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ (2nd
‘𝑝)))) ∨
∃𝑛 ∈ ω
(𝑥 =
∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))) ↔ ∃𝑒∃𝑏(∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))))) |
| 52 | | r19.41vv 3227 |
. . . . . . . . 9
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω ((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))) ↔ (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏})))) |
| 53 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = (𝑖∈𝑔𝑗) → (𝑒⊼𝑔𝑐) = ((𝑖∈𝑔𝑗)⊼𝑔𝑐)) |
| 54 | 53 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = (𝑖∈𝑔𝑗) → (𝑥 = (𝑒⊼𝑔𝑐) ↔ 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐))) |
| 55 | | ineq1 4213 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} → (𝑏 ∩ 𝑑) = ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)) |
| 56 | 55 | difeq2d 4126 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} → ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)) = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑))) |
| 57 | 56 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} → (𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)) ↔ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) |
| 58 | 54, 57 | bi2anan9 638 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) → ((𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑))) ↔ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑))))) |
| 59 | 58 | anbi2d 630 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) → ((∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ↔ (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))))) |
| 60 | 59 | 2exbidv 1924 |
. . . . . . . . . . . . . . 15
⊢ ((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) → (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ↔ ∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))))) |
| 61 | | eqidd 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = (𝑖∈𝑔𝑗) → 𝑛 = 𝑛) |
| 62 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = (𝑖∈𝑔𝑗) → 𝑒 = (𝑖∈𝑔𝑗)) |
| 63 | 61, 62 | goaleq12d 35356 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = (𝑖∈𝑔𝑗) → ∀𝑔𝑛𝑒 = ∀𝑔𝑛(𝑖∈𝑔𝑗)) |
| 64 | 63 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 = (𝑖∈𝑔𝑗) → (𝑥 = ∀𝑔𝑛𝑒 ↔ 𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗))) |
| 65 | | nfrab1 3457 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑎{𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} |
| 66 | 65 | nfeq2 2923 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑎 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} |
| 67 | | eleq2 2830 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} → (({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏 ↔ ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})) |
| 68 | 67 | ralbidv 3178 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} → (∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏 ↔ ∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})) |
| 69 | 66, 68 | rabbid 3464 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} → {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}}) |
| 70 | 69 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} → (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏} ↔ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}})) |
| 71 | 64, 70 | bi2anan9 638 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) → ((𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}) ↔ (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}}))) |
| 72 | 71 | rexbidv 3179 |
. . . . . . . . . . . . . . 15
⊢ ((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) → (∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}) ↔ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}}))) |
| 73 | 60, 72 | orbi12d 919 |
. . . . . . . . . . . . . 14
⊢ ((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) → ((∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏})) ↔ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}})))) |
| 74 | 73 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})) → ((∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏})) ↔ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}})))) |
| 75 | | r19.41vv 3227 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑘 ∈
ω ∃𝑙 ∈
ω ((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) ↔ (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑))))) |
| 76 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑐 = (𝑘∈𝑔𝑙) → ((𝑖∈𝑔𝑗)⊼𝑔𝑐) = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙))) |
| 77 | 76 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) → ((𝑖∈𝑔𝑗)⊼𝑔𝑐) = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙))) |
| 78 | 77 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) → (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ↔ 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) |
| 79 | | ineq2 4214 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)} → ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑) = ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)})) |
| 80 | 79 | difeq2d 4126 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)} → ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)) = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}))) |
| 81 | | inrab 4316 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) = {𝑎 ∈ (𝑀 ↑m ω) ∣ ((𝑎‘𝑖)𝐸(𝑎‘𝑗) ∧ (𝑎‘𝑘)𝐸(𝑎‘𝑙))} |
| 82 | 81 | difeq2i 4123 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑀 ↑m ω)
∖ ({𝑎 ∈ (𝑀 ↑m ω)
∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)})) = ((𝑀 ↑m ω) ∖ {𝑎 ∈ (𝑀 ↑m ω) ∣ ((𝑎‘𝑖)𝐸(𝑎‘𝑗) ∧ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) |
| 83 | | notrab 4322 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑀 ↑m ω)
∖ {𝑎 ∈ (𝑀 ↑m ω)
∣ ((𝑎‘𝑖)𝐸(𝑎‘𝑗) ∧ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) = {𝑎 ∈ (𝑀 ↑m ω) ∣ ¬
((𝑎‘𝑖)𝐸(𝑎‘𝑗) ∧ (𝑎‘𝑘)𝐸(𝑎‘𝑙))} |
| 84 | | ianor 984 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (¬
((𝑎‘𝑖)𝐸(𝑎‘𝑗) ∧ (𝑎‘𝑘)𝐸(𝑎‘𝑙)) ↔ (¬ (𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))) |
| 85 | 84 | rabbii 3442 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ {𝑎 ∈ (𝑀 ↑m ω) ∣ ¬
((𝑎‘𝑖)𝐸(𝑎‘𝑗) ∧ (𝑎‘𝑘)𝐸(𝑎‘𝑙))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))} |
| 86 | 82, 83, 85 | 3eqtri 2769 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑀 ↑m ω)
∖ ({𝑎 ∈ (𝑀 ↑m ω)
∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)})) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))} |
| 87 | 80, 86 | eqtrdi 2793 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)} → ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) |
| 88 | 87 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)} → (𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)) ↔ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))})) |
| 89 | 88 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) → (𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)) ↔ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))})) |
| 90 | 78, 89 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) → ((𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑))) ↔ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}))) |
| 91 | 90 | biimpa 476 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) → (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))})) |
| 92 | 91 | reximi 3084 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑙 ∈
ω ((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) → ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))})) |
| 93 | 92 | reximi 3084 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑘 ∈
ω ∃𝑙 ∈
ω ((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))})) |
| 94 | 75, 93 | sylbir 235 |
. . . . . . . . . . . . . . . 16
⊢
((∃𝑘 ∈
ω ∃𝑙 ∈
ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))})) |
| 95 | 94 | exlimivv 1932 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))})) |
| 96 | 95 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})) → (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}))) |
| 97 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑛 ∈ ω) → 𝑛 ∈
ω) |
| 98 | | simpll 767 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑛 ∈ ω) → 𝑖 ∈
ω) |
| 99 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑛 ∈ ω) → 𝑗 ∈
ω) |
| 100 | | fveq1 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = 𝑏 → (𝑎‘𝑖) = (𝑏‘𝑖)) |
| 101 | | fveq1 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = 𝑏 → (𝑎‘𝑗) = (𝑏‘𝑗)) |
| 102 | 100, 101 | breq12d 5156 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 = 𝑏 → ((𝑎‘𝑖)𝐸(𝑎‘𝑗) ↔ (𝑏‘𝑖)𝐸(𝑏‘𝑗))) |
| 103 | 102 | cbvrabv 3447 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} = {𝑏 ∈ (𝑀 ↑m ω) ∣ (𝑏‘𝑖)𝐸(𝑏‘𝑗)} |
| 104 | 103 | eleq2i 2833 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ↔ ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑏 ∈ (𝑀 ↑m ω) ∣ (𝑏‘𝑖)𝐸(𝑏‘𝑗)}) |
| 105 | 104 | ralbii 3093 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑧 ∈
𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ↔ ∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑏 ∈ (𝑀 ↑m ω) ∣ (𝑏‘𝑖)𝐸(𝑏‘𝑗)}) |
| 106 | 105 | rabbii 3442 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑏 ∈ (𝑀 ↑m ω) ∣ (𝑏‘𝑖)𝐸(𝑏‘𝑗)}} |
| 107 | | satfv1lem 35367 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ ω ∧ 𝑖 ∈ ω ∧ 𝑗 ∈ ω) → {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑏 ∈ (𝑀 ↑m ω) ∣ (𝑏‘𝑖)𝐸(𝑏‘𝑗)}} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}) |
| 108 | 106, 107 | eqtrid 2789 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ω ∧ 𝑖 ∈ ω ∧ 𝑗 ∈ ω) → {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}) |
| 109 | 97, 98, 99, 108 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑛 ∈ ω) → {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}) |
| 110 | 109 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑛 ∈ ω) → (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}} ↔ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})) |
| 111 | 110 | biimpd 229 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑛 ∈ ω) → (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}} → 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})) |
| 112 | 111 | anim2d 612 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑛 ∈ ω) → ((𝑥 =
∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}}) → (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))) |
| 113 | 112 | reximdva 3168 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) →
(∃𝑛 ∈ ω
(𝑥 =
∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}}) → ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))) |
| 114 | 113 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})) → (∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}}) → ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))) |
| 115 | 96, 114 | orim12d 967 |
. . . . . . . . . . . . 13
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})) → ((∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}})) → (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})))) |
| 116 | 74, 115 | sylbid 240 |
. . . . . . . . . . . 12
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})) → ((∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏})) → (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})))) |
| 117 | 116 | expimpd 453 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))) → (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})))) |
| 118 | 117 | reximdva 3168 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ω →
(∃𝑗 ∈ ω
((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))) → ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})))) |
| 119 | 118 | reximia 3081 |
. . . . . . . . 9
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω ((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))) |
| 120 | 52, 119 | sylbir 235 |
. . . . . . . 8
⊢
((∃𝑖 ∈
ω ∃𝑗 ∈
ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))) |
| 121 | 120 | exlimivv 1932 |
. . . . . . 7
⊢
(∃𝑒∃𝑏(∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))) |
| 122 | | ovex 7464 |
. . . . . . . . . . . . 13
⊢ (𝑖∈𝑔𝑗) ∈ V |
| 123 | | ovex 7464 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ↑m ω)
∈ V |
| 124 | 123 | rabex 5339 |
. . . . . . . . . . . . 13
⊢ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∈ V |
| 125 | 122, 124 | pm3.2i 470 |
. . . . . . . . . . . 12
⊢ ((𝑖∈𝑔𝑗) ∈ V ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∈ V) |
| 126 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘∈𝑔𝑙) = (𝑘∈𝑔𝑙) |
| 127 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)} |
| 128 | 126, 127 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘∈𝑔𝑙) = (𝑘∈𝑔𝑙) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) |
| 129 | 86 | eqcomi 2746 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))} = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)})) |
| 130 | 129 | eqeq2i 2750 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))} ↔ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}))) |
| 131 | 130 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))} → 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}))) |
| 132 | 131 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) → (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)})))) |
| 133 | | ovex 7464 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘∈𝑔𝑙) ∈ V |
| 134 | 123 | rabex 5339 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)} ∈ V |
| 135 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑐 = (𝑘∈𝑔𝑙) → (𝑐 = (𝑘∈𝑔𝑙) ↔ (𝑘∈𝑔𝑙) = (𝑘∈𝑔𝑙))) |
| 136 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)} → (𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)} ↔ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)})) |
| 137 | 135, 136 | bi2anan9 638 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) → ((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ↔ ((𝑘∈𝑔𝑙) = (𝑘∈𝑔𝑙) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}))) |
| 138 | 76 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑐 = (𝑘∈𝑔𝑙) → (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ↔ 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) |
| 139 | 80 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)} → (𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)) ↔ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)})))) |
| 140 | 138, 139 | bi2anan9 638 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) → ((𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑))) ↔ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}))))) |
| 141 | 137, 140 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) → (((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) ↔ (((𝑘∈𝑔𝑙) = (𝑘∈𝑔𝑙) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)})))))) |
| 142 | 133, 134,
141 | spc2ev 3607 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑘∈𝑔𝑙) = (𝑘∈𝑔𝑙) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)})))) → ∃𝑐∃𝑑((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑))))) |
| 143 | 128, 132,
142 | sylancr 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) → ∃𝑐∃𝑑((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑))))) |
| 144 | 143 | reximi 3084 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑙 ∈
ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) → ∃𝑙 ∈ ω ∃𝑐∃𝑑((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑))))) |
| 145 | 144 | reximi 3084 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑘 ∈
ω ∃𝑙 ∈
ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω ∃𝑐∃𝑑((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑))))) |
| 146 | 75 | bicomi 224 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∃𝑘 ∈
ω ∃𝑙 ∈
ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω ((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑))))) |
| 147 | 146 | 2exbii 1849 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) ↔ ∃𝑐∃𝑑∃𝑘 ∈ ω ∃𝑙 ∈ ω ((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑))))) |
| 148 | | 2ex2rexrot 3298 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑐∃𝑑∃𝑘 ∈ ω ∃𝑙 ∈ ω ((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω ∃𝑐∃𝑑((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑))))) |
| 149 | 147, 148 | bitri 275 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω ∃𝑐∃𝑑((𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑))))) |
| 150 | 145, 149 | sylibr 234 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑘 ∈
ω ∃𝑙 ∈
ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) → ∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑))))) |
| 151 | 150 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) →
(∃𝑘 ∈ ω
∃𝑙 ∈ ω
(𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) → ∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))))) |
| 152 | 109 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑛 ∈ ω) → {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}}) |
| 153 | 152 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑛 ∈ ω) → (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))} ↔ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}})) |
| 154 | 153 | biimpd 229 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑛 ∈ ω) → (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))} → 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}})) |
| 155 | 154 | anim2d 612 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑛 ∈ ω) → ((𝑥 =
∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}) → (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}}))) |
| 156 | 155 | reximdva 3168 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) →
(∃𝑛 ∈ ω
(𝑥 =
∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}) → ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}}))) |
| 157 | 151, 156 | orim12d 967 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) →
((∃𝑘 ∈ ω
∃𝑙 ∈ ω
(𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})) → (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}})))) |
| 158 | 157 | imp 406 |
. . . . . . . . . . . . 13
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧
(∃𝑘 ∈ ω
∃𝑙 ∈ ω
(𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))) → (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}}))) |
| 159 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢ (𝑖∈𝑔𝑗) = (𝑖∈𝑔𝑗) |
| 160 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} |
| 161 | 159, 160 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ ((𝑖∈𝑔𝑗) = (𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) |
| 162 | 158, 161 | jctil 519 |
. . . . . . . . . . . 12
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧
(∃𝑘 ∈ ω
∃𝑙 ∈ ω
(𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))) → (((𝑖∈𝑔𝑗) = (𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}})))) |
| 163 | | eqeq1 2741 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = (𝑖∈𝑔𝑗) → (𝑒 = (𝑖∈𝑔𝑗) ↔ (𝑖∈𝑔𝑗) = (𝑖∈𝑔𝑗))) |
| 164 | | eqeq1 2741 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} → (𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ↔ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})) |
| 165 | 163, 164 | bi2anan9 638 |
. . . . . . . . . . . . . 14
⊢ ((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) → ((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ↔ ((𝑖∈𝑔𝑗) = (𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}))) |
| 166 | 165, 73 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ ((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) → (((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))) ↔ (((𝑖∈𝑔𝑗) = (𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}}))))) |
| 167 | 166 | spc2egv 3599 |
. . . . . . . . . . . 12
⊢ (((𝑖∈𝑔𝑗) ∈ V ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∈ V) → ((((𝑖∈𝑔𝑗) = (𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ({𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}}))) → ∃𝑒∃𝑏((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))))) |
| 168 | 125, 162,
167 | mpsyl 68 |
. . . . . . . . . . 11
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧
(∃𝑘 ∈ ω
∃𝑙 ∈ ω
(𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))) → ∃𝑒∃𝑏((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏})))) |
| 169 | 168 | ex 412 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) →
((∃𝑘 ∈ ω
∃𝑙 ∈ ω
(𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})) → ∃𝑒∃𝑏((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))))) |
| 170 | 169 | reximdva 3168 |
. . . . . . . . 9
⊢ (𝑖 ∈ ω →
(∃𝑗 ∈ ω
(∃𝑘 ∈ ω
∃𝑙 ∈ ω
(𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})) → ∃𝑗 ∈ ω ∃𝑒∃𝑏((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))))) |
| 171 | 170 | reximia 3081 |
. . . . . . . 8
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω (∃𝑘 ∈
ω ∃𝑙 ∈
ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑒∃𝑏((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏})))) |
| 172 | 52 | bicomi 224 |
. . . . . . . . . 10
⊢
((∃𝑖 ∈
ω ∃𝑗 ∈
ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏})))) |
| 173 | 172 | 2exbii 1849 |
. . . . . . . . 9
⊢
(∃𝑒∃𝑏(∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))) ↔ ∃𝑒∃𝑏∃𝑖 ∈ ω ∃𝑗 ∈ ω ((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏})))) |
| 174 | | 2ex2rexrot 3298 |
. . . . . . . . 9
⊢
(∃𝑒∃𝑏∃𝑖 ∈ ω ∃𝑗 ∈ ω ((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑒∃𝑏((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏})))) |
| 175 | 173, 174 | bitri 275 |
. . . . . . . 8
⊢
(∃𝑒∃𝑏(∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑒∃𝑏((𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏})))) |
| 176 | 171, 175 | sylibr 234 |
. . . . . . 7
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω (∃𝑘 ∈
ω ∃𝑙 ∈
ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})) → ∃𝑒∃𝑏(∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏})))) |
| 177 | 121, 176 | impbii 209 |
. . . . . 6
⊢
(∃𝑒∃𝑏(∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑐∃𝑑(∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑐 = (𝑘∈𝑔𝑙) ∧ 𝑑 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑘)𝐸(𝑎‘𝑙)}) ∧ (𝑥 = (𝑒⊼𝑔𝑐) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ 𝑑)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))) |
| 178 | 51, 177 | bitrdi 287 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (∃𝑒∃𝑏(∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑒 = (𝑖∈𝑔𝑗) ∧ 𝑏 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ∧ (∃𝑝 ∈ (𝑆‘∅)(𝑥 = (𝑒⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ (𝑏 ∩ (2nd
‘𝑝)))) ∨
∃𝑛 ∈ ω
(𝑥 =
∀𝑔𝑛𝑒 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ 𝑏}))) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})))) |
| 179 | 33, 178 | bitrd 279 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (∃𝑜 ∈ (𝑆‘∅)(∃𝑝 ∈ (𝑆‘∅)(𝑥 = ((1st ‘𝑜)⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑜)
∩ (2nd ‘𝑝)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(1st ‘𝑜) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ (2nd ‘𝑜)})) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})))) |
| 180 | 179 | opabbidv 5209 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → {〈𝑥, 𝑦〉 ∣ ∃𝑜 ∈ (𝑆‘∅)(∃𝑝 ∈ (𝑆‘∅)(𝑥 = ((1st ‘𝑜)⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑜)
∩ (2nd ‘𝑝)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(1st ‘𝑜) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ (2nd ‘𝑜)}))} = {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))}) |
| 181 | 180 | uneq2d 4168 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑆‘∅) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑜 ∈ (𝑆‘∅)(∃𝑝 ∈ (𝑆‘∅)(𝑥 = ((1st ‘𝑜)⊼𝑔(1st
‘𝑝)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑜)
∩ (2nd ‘𝑝)))) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(1st ‘𝑜) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑛, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑛}))) ∈ (2nd ‘𝑜)}))}) = ((𝑆‘∅) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))})) |
| 182 | 3, 7, 181 | 3eqtrd 2781 |
1
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘1o) = ((𝑆‘∅) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))})) |