Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fun2dmnopgexmpl Structured version   Visualization version   GIF version

Theorem fun2dmnopgexmpl 47230
Description: A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 21-Sep-2020.) (Avoid depending on this detail.)
Assertion
Ref Expression
fun2dmnopgexmpl (𝐺 = {⟨0, 1⟩, ⟨1, 1⟩} → ¬ 𝐺 ∈ (V × V))

Proof of Theorem fun2dmnopgexmpl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ne1 12318 . . . . . . . 8 0 ≠ 1
21neii 2933 . . . . . . 7 ¬ 0 = 1
32intnanr 487 . . . . . 6 ¬ (0 = 1 ∧ 𝑎 = {0})
43intnanr 487 . . . . 5 ¬ ((0 = 1 ∧ 𝑎 = {0}) ∧ ((0 = 1 ∧ 𝑏 = {0, 1}) ∨ (0 = 1 ∧ 𝑏 = {0, 1})))
54gen2 1795 . . . 4 𝑎𝑏 ¬ ((0 = 1 ∧ 𝑎 = {0}) ∧ ((0 = 1 ∧ 𝑏 = {0, 1}) ∨ (0 = 1 ∧ 𝑏 = {0, 1})))
6 eqeq1 2738 . . . . . . 7 (𝐺 = {⟨0, 1⟩, ⟨1, 1⟩} → (𝐺 = ⟨𝑎, 𝑏⟩ ↔ {⟨0, 1⟩, ⟨1, 1⟩} = ⟨𝑎, 𝑏⟩))
7 c0ex 11236 . . . . . . . 8 0 ∈ V
8 1ex 11238 . . . . . . . 8 1 ∈ V
9 vex 3467 . . . . . . . 8 𝑎 ∈ V
10 vex 3467 . . . . . . . 8 𝑏 ∈ V
117, 8, 8, 8, 9, 10propeqop 5492 . . . . . . 7 ({⟨0, 1⟩, ⟨1, 1⟩} = ⟨𝑎, 𝑏⟩ ↔ ((0 = 1 ∧ 𝑎 = {0}) ∧ ((0 = 1 ∧ 𝑏 = {0, 1}) ∨ (0 = 1 ∧ 𝑏 = {0, 1}))))
126, 11bitrdi 287 . . . . . 6 (𝐺 = {⟨0, 1⟩, ⟨1, 1⟩} → (𝐺 = ⟨𝑎, 𝑏⟩ ↔ ((0 = 1 ∧ 𝑎 = {0}) ∧ ((0 = 1 ∧ 𝑏 = {0, 1}) ∨ (0 = 1 ∧ 𝑏 = {0, 1})))))
1312notbid 318 . . . . 5 (𝐺 = {⟨0, 1⟩, ⟨1, 1⟩} → (¬ 𝐺 = ⟨𝑎, 𝑏⟩ ↔ ¬ ((0 = 1 ∧ 𝑎 = {0}) ∧ ((0 = 1 ∧ 𝑏 = {0, 1}) ∨ (0 = 1 ∧ 𝑏 = {0, 1})))))
14132albidv 1922 . . . 4 (𝐺 = {⟨0, 1⟩, ⟨1, 1⟩} → (∀𝑎𝑏 ¬ 𝐺 = ⟨𝑎, 𝑏⟩ ↔ ∀𝑎𝑏 ¬ ((0 = 1 ∧ 𝑎 = {0}) ∧ ((0 = 1 ∧ 𝑏 = {0, 1}) ∨ (0 = 1 ∧ 𝑏 = {0, 1})))))
155, 14mpbiri 258 . . 3 (𝐺 = {⟨0, 1⟩, ⟨1, 1⟩} → ∀𝑎𝑏 ¬ 𝐺 = ⟨𝑎, 𝑏⟩)
16 2nexaln 1829 . . 3 (¬ ∃𝑎𝑏 𝐺 = ⟨𝑎, 𝑏⟩ ↔ ∀𝑎𝑏 ¬ 𝐺 = ⟨𝑎, 𝑏⟩)
1715, 16sylibr 234 . 2 (𝐺 = {⟨0, 1⟩, ⟨1, 1⟩} → ¬ ∃𝑎𝑏 𝐺 = ⟨𝑎, 𝑏⟩)
18 elvv 5740 . 2 (𝐺 ∈ (V × V) ↔ ∃𝑎𝑏 𝐺 = ⟨𝑎, 𝑏⟩)
1917, 18sylnibr 329 1 (𝐺 = {⟨0, 1⟩, ⟨1, 1⟩} → ¬ 𝐺 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wal 1537   = wceq 1539  wex 1778  wcel 2107  Vcvv 3463  {csn 4606  {cpr 4608  cop 4612   × cxp 5663  0cc0 11136  1c1 11137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-mulcl 11198  ax-i2m1 11204  ax-1ne0 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-opab 5186  df-xp 5671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator