Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  spr0nelg Structured version   Visualization version   GIF version

Theorem spr0nelg 47490
Description: The empty set is not an element of all unordered pairs. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
spr0nelg ∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
Distinct variable groups:   𝑝,𝑎   𝑝,𝑏

Proof of Theorem spr0nelg
StepHypRef Expression
1 ianor 983 . . . . . 6 (¬ (𝑝 = ∅ ∧ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}) ↔ (¬ 𝑝 = ∅ ∨ ¬ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
21bicomi 224 . . . . 5 ((¬ 𝑝 = ∅ ∨ ¬ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}) ↔ ¬ (𝑝 = ∅ ∧ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
32albii 1819 . . . 4 (∀𝑝𝑝 = ∅ ∨ ¬ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}) ↔ ∀𝑝 ¬ (𝑝 = ∅ ∧ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
4 alnex 1781 . . . 4 (∀𝑝 ¬ (𝑝 = ∅ ∧ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}) ↔ ¬ ∃𝑝(𝑝 = ∅ ∧ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
53, 4bitri 275 . . 3 (∀𝑝𝑝 = ∅ ∨ ¬ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}) ↔ ¬ ∃𝑝(𝑝 = ∅ ∧ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
6 vex 3463 . . . . . . . . 9 𝑎 ∈ V
76prnz 4753 . . . . . . . 8 {𝑎, 𝑏} ≠ ∅
87nesymi 2989 . . . . . . 7 ¬ ∅ = {𝑎, 𝑏}
9 eqeq1 2739 . . . . . . 7 (𝑝 = ∅ → (𝑝 = {𝑎, 𝑏} ↔ ∅ = {𝑎, 𝑏}))
108, 9mtbiri 327 . . . . . 6 (𝑝 = ∅ → ¬ 𝑝 = {𝑎, 𝑏})
1110alrimivv 1928 . . . . 5 (𝑝 = ∅ → ∀𝑎𝑏 ¬ 𝑝 = {𝑎, 𝑏})
12 2nexaln 1830 . . . . 5 (¬ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏} ↔ ∀𝑎𝑏 ¬ 𝑝 = {𝑎, 𝑏})
1311, 12sylibr 234 . . . 4 (𝑝 = ∅ → ¬ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
1413imori 854 . . 3 𝑝 = ∅ ∨ ¬ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
155, 14mpgbi 1798 . 2 ¬ ∃𝑝(𝑝 = ∅ ∧ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
16 df-nel 3037 . . 3 (∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} ↔ ¬ ∅ ∈ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
17 clelab 2880 . . 3 (∅ ∈ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} ↔ ∃𝑝(𝑝 = ∅ ∧ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
1816, 17xchbinx 334 . 2 (∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} ↔ ¬ ∃𝑝(𝑝 = ∅ ∧ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
1915, 18mpbir 231 1 ∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847  wal 1538   = wceq 1540  wex 1779  wcel 2108  {cab 2713  wnel 3036  c0 4308  {cpr 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-nel 3037  df-v 3461  df-dif 3929  df-un 3931  df-nul 4309  df-sn 4602  df-pr 4604
This theorem is referenced by:  spr0el  47496
  Copyright terms: Public domain W3C validator