Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  spr0nelg Structured version   Visualization version   GIF version

Theorem spr0nelg 43923
 Description: The empty set is not an element of all unordered pairs. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
spr0nelg ∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
Distinct variable groups:   𝑝,𝑎   𝑝,𝑏

Proof of Theorem spr0nelg
StepHypRef Expression
1 ianor 979 . . . . . 6 (¬ (𝑝 = ∅ ∧ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}) ↔ (¬ 𝑝 = ∅ ∨ ¬ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
21bicomi 227 . . . . 5 ((¬ 𝑝 = ∅ ∨ ¬ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}) ↔ ¬ (𝑝 = ∅ ∧ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
32albii 1821 . . . 4 (∀𝑝𝑝 = ∅ ∨ ¬ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}) ↔ ∀𝑝 ¬ (𝑝 = ∅ ∧ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
4 alnex 1783 . . . 4 (∀𝑝 ¬ (𝑝 = ∅ ∧ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}) ↔ ¬ ∃𝑝(𝑝 = ∅ ∧ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
53, 4bitri 278 . . 3 (∀𝑝𝑝 = ∅ ∨ ¬ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}) ↔ ¬ ∃𝑝(𝑝 = ∅ ∧ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
6 vex 3483 . . . . . . . . 9 𝑎 ∈ V
76prnz 4697 . . . . . . . 8 {𝑎, 𝑏} ≠ ∅
87nesymi 3071 . . . . . . 7 ¬ ∅ = {𝑎, 𝑏}
9 eqeq1 2828 . . . . . . 7 (𝑝 = ∅ → (𝑝 = {𝑎, 𝑏} ↔ ∅ = {𝑎, 𝑏}))
108, 9mtbiri 330 . . . . . 6 (𝑝 = ∅ → ¬ 𝑝 = {𝑎, 𝑏})
1110alrimivv 1930 . . . . 5 (𝑝 = ∅ → ∀𝑎𝑏 ¬ 𝑝 = {𝑎, 𝑏})
12 2nexaln 1831 . . . . 5 (¬ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏} ↔ ∀𝑎𝑏 ¬ 𝑝 = {𝑎, 𝑏})
1311, 12sylibr 237 . . . 4 (𝑝 = ∅ → ¬ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
1413imori 851 . . 3 𝑝 = ∅ ∨ ¬ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
155, 14mpgbi 1800 . 2 ¬ ∃𝑝(𝑝 = ∅ ∧ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
16 df-nel 3119 . . 3 (∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} ↔ ¬ ∅ ∈ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
17 clelab 2959 . . 3 (∅ ∈ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} ↔ ∃𝑝(𝑝 = ∅ ∧ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
1816, 17xchbinx 337 . 2 (∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} ↔ ¬ ∃𝑝(𝑝 = ∅ ∧ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
1915, 18mpbir 234 1 ∅ ∉ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 399   ∨ wo 844  ∀wal 1536   = wceq 1538  ∃wex 1781   ∈ wcel 2115  {cab 2802   ∉ wnel 3118  ∅c0 4276  {cpr 4552 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-ne 3015  df-nel 3119  df-v 3482  df-dif 3922  df-un 3924  df-nul 4277  df-sn 4551  df-pr 4553 This theorem is referenced by:  spr0el  43929
 Copyright terms: Public domain W3C validator