| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp31 | Structured version Visualization version GIF version | ||
| Description: The importation inference 3imp 1110 with commutation of the first and third conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) |
| Ref | Expression |
|---|---|
| 3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| 3imp31 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com13 88 | . 2 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
| 3 | 2 | 3imp 1110 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3com13 1124 dvdsmodexp 16281 gsummatr01lem4 22631 elntg2 28949 pthdadjvtx 29695 umgr2cwwk2dif 30030 frgrwopreglem2 30279 relexpxpmin 43675 prproropf1olem4 47439 grimuhgr 47824 grlimgrtrilem2 47908 resum2sqorgt0 48576 |
| Copyright terms: Public domain | W3C validator |