Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3imp31 | Structured version Visualization version GIF version |
Description: The importation inference 3imp 1110 with commutation of the first and third conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) |
Ref | Expression |
---|---|
3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
3imp31 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com13 88 | . 2 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
3 | 2 | 3imp 1110 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3com13 1123 dvdsmodexp 15971 gsummatr01lem4 21807 elntg2 27353 pthdadjvtx 28098 umgr2cwwk2dif 28428 frgrwopreglem2 28677 relexpxpmin 41325 prproropf1olem4 44958 resum2sqorgt0 46055 |
Copyright terms: Public domain | W3C validator |