MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem2 Structured version   Visualization version   GIF version

Theorem frgrwopreglem2 30292
Description: Lemma 2 for frgrwopreg 30302. If the set 𝐴 of vertices of degree 𝐾 is not empty in a friendship graph with at least two vertices, then 𝐾 must be greater than 1 . This is only an observation, which is not required for the proof the friendship theorem. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 2-Jan-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
Assertion
Ref Expression
frgrwopreglem2 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)

Proof of Theorem frgrwopreglem2
StepHypRef Expression
1 n0 4312 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 frgrwopreg.a . . . . . 6 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
32reqabi 3426 . . . . 5 (𝑥𝐴 ↔ (𝑥𝑉 ∧ (𝐷𝑥) = 𝐾))
4 frgrwopreg.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
54vdgfrgrgt2 30277 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑥𝑉) → (1 < (♯‘𝑉) → 2 ≤ ((VtxDeg‘𝐺)‘𝑥)))
65imp 406 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑥𝑉) ∧ 1 < (♯‘𝑉)) → 2 ≤ ((VtxDeg‘𝐺)‘𝑥))
7 breq2 5106 . . . . . . . . . . 11 (𝐾 = (𝐷𝑥) → (2 ≤ 𝐾 ↔ 2 ≤ (𝐷𝑥)))
8 frgrwopreg.d . . . . . . . . . . . . 13 𝐷 = (VtxDeg‘𝐺)
98fveq1i 6841 . . . . . . . . . . . 12 (𝐷𝑥) = ((VtxDeg‘𝐺)‘𝑥)
109breq2i 5110 . . . . . . . . . . 11 (2 ≤ (𝐷𝑥) ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥))
117, 10bitrdi 287 . . . . . . . . . 10 (𝐾 = (𝐷𝑥) → (2 ≤ 𝐾 ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥)))
1211eqcoms 2737 . . . . . . . . 9 ((𝐷𝑥) = 𝐾 → (2 ≤ 𝐾 ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥)))
136, 12syl5ibrcom 247 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ 𝑥𝑉) ∧ 1 < (♯‘𝑉)) → ((𝐷𝑥) = 𝐾 → 2 ≤ 𝐾))
1413exp31 419 . . . . . . 7 (𝐺 ∈ FriendGraph → (𝑥𝑉 → (1 < (♯‘𝑉) → ((𝐷𝑥) = 𝐾 → 2 ≤ 𝐾))))
1514com14 96 . . . . . 6 ((𝐷𝑥) = 𝐾 → (𝑥𝑉 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))))
1615impcom 407 . . . . 5 ((𝑥𝑉 ∧ (𝐷𝑥) = 𝐾) → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))
173, 16sylbi 217 . . . 4 (𝑥𝐴 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))
1817exlimiv 1930 . . 3 (∃𝑥 𝑥𝐴 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))
191, 18sylbi 217 . 2 (𝐴 ≠ ∅ → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))
20193imp31 1111 1 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  {crab 3402  cdif 3908  c0 4292   class class class wbr 5102  cfv 6499  1c1 11045   < clt 11184  cle 11185  2c2 12217  chash 14271  Vtxcvtx 28976  VtxDegcvtxdg 29446   FriendGraph cfrgr 30237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-xadd 13049  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-s2 14790  df-s3 14791  df-edg 29028  df-uhgr 29038  df-upgr 29062  df-umgr 29063  df-uspgr 29130  df-usgr 29131  df-vtxdg 29447  df-wlks 29580  df-wlkson 29581  df-trls 29671  df-trlson 29672  df-pths 29694  df-spths 29695  df-pthson 29696  df-spthson 29697  df-conngr 30166  df-frgr 30238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator