![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrwopreglem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for frgrwopreg 29565. If the set π΄ of vertices of degree πΎ is not empty in a friendship graph with at least two vertices, then πΎ must be greater than 1 . This is only an observation, which is not required for the proof the friendship theorem. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 2-Jan-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | β’ π = (VtxβπΊ) |
frgrwopreg.d | β’ π· = (VtxDegβπΊ) |
frgrwopreg.a | β’ π΄ = {π₯ β π β£ (π·βπ₯) = πΎ} |
frgrwopreg.b | β’ π΅ = (π β π΄) |
Ref | Expression |
---|---|
frgrwopreglem2 | β’ ((πΊ β FriendGraph β§ 1 < (β―βπ) β§ π΄ β β ) β 2 β€ πΎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4345 | . . 3 β’ (π΄ β β β βπ₯ π₯ β π΄) | |
2 | frgrwopreg.a | . . . . . 6 β’ π΄ = {π₯ β π β£ (π·βπ₯) = πΎ} | |
3 | 2 | reqabi 3454 | . . . . 5 β’ (π₯ β π΄ β (π₯ β π β§ (π·βπ₯) = πΎ)) |
4 | frgrwopreg.v | . . . . . . . . . . 11 β’ π = (VtxβπΊ) | |
5 | 4 | vdgfrgrgt2 29540 | . . . . . . . . . 10 β’ ((πΊ β FriendGraph β§ π₯ β π) β (1 < (β―βπ) β 2 β€ ((VtxDegβπΊ)βπ₯))) |
6 | 5 | imp 407 | . . . . . . . . 9 β’ (((πΊ β FriendGraph β§ π₯ β π) β§ 1 < (β―βπ)) β 2 β€ ((VtxDegβπΊ)βπ₯)) |
7 | breq2 5151 | . . . . . . . . . . 11 β’ (πΎ = (π·βπ₯) β (2 β€ πΎ β 2 β€ (π·βπ₯))) | |
8 | frgrwopreg.d | . . . . . . . . . . . . 13 β’ π· = (VtxDegβπΊ) | |
9 | 8 | fveq1i 6889 | . . . . . . . . . . . 12 β’ (π·βπ₯) = ((VtxDegβπΊ)βπ₯) |
10 | 9 | breq2i 5155 | . . . . . . . . . . 11 β’ (2 β€ (π·βπ₯) β 2 β€ ((VtxDegβπΊ)βπ₯)) |
11 | 7, 10 | bitrdi 286 | . . . . . . . . . 10 β’ (πΎ = (π·βπ₯) β (2 β€ πΎ β 2 β€ ((VtxDegβπΊ)βπ₯))) |
12 | 11 | eqcoms 2740 | . . . . . . . . 9 β’ ((π·βπ₯) = πΎ β (2 β€ πΎ β 2 β€ ((VtxDegβπΊ)βπ₯))) |
13 | 6, 12 | syl5ibrcom 246 | . . . . . . . 8 β’ (((πΊ β FriendGraph β§ π₯ β π) β§ 1 < (β―βπ)) β ((π·βπ₯) = πΎ β 2 β€ πΎ)) |
14 | 13 | exp31 420 | . . . . . . 7 β’ (πΊ β FriendGraph β (π₯ β π β (1 < (β―βπ) β ((π·βπ₯) = πΎ β 2 β€ πΎ)))) |
15 | 14 | com14 96 | . . . . . 6 β’ ((π·βπ₯) = πΎ β (π₯ β π β (1 < (β―βπ) β (πΊ β FriendGraph β 2 β€ πΎ)))) |
16 | 15 | impcom 408 | . . . . 5 β’ ((π₯ β π β§ (π·βπ₯) = πΎ) β (1 < (β―βπ) β (πΊ β FriendGraph β 2 β€ πΎ))) |
17 | 3, 16 | sylbi 216 | . . . 4 β’ (π₯ β π΄ β (1 < (β―βπ) β (πΊ β FriendGraph β 2 β€ πΎ))) |
18 | 17 | exlimiv 1933 | . . 3 β’ (βπ₯ π₯ β π΄ β (1 < (β―βπ) β (πΊ β FriendGraph β 2 β€ πΎ))) |
19 | 1, 18 | sylbi 216 | . 2 β’ (π΄ β β β (1 < (β―βπ) β (πΊ β FriendGraph β 2 β€ πΎ))) |
20 | 19 | 3imp31 1112 | 1 β’ ((πΊ β FriendGraph β§ 1 < (β―βπ) β§ π΄ β β ) β 2 β€ πΎ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 βwex 1781 β wcel 2106 β wne 2940 {crab 3432 β cdif 3944 β c0 4321 class class class wbr 5147 βcfv 6540 1c1 11107 < clt 11244 β€ cle 11245 2c2 12263 β―chash 14286 Vtxcvtx 28245 VtxDegcvtxdg 28711 FriendGraph cfrgr 29500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ifp 1062 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-xadd 13089 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-concat 14517 df-s1 14542 df-s2 14795 df-s3 14796 df-edg 28297 df-uhgr 28307 df-upgr 28331 df-umgr 28332 df-uspgr 28399 df-usgr 28400 df-vtxdg 28712 df-wlks 28845 df-wlkson 28846 df-trls 28938 df-trlson 28939 df-pths 28962 df-spths 28963 df-pthson 28964 df-spthson 28965 df-conngr 29429 df-frgr 29501 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |