Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgrwopreglem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for frgrwopreg 28687. If the set 𝐴 of vertices of degree 𝐾 is not empty in a friendship graph with at least two vertices, then 𝐾 must be greater than 1 . This is only an observation, which is not required for the proof the friendship theorem. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 2-Jan-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
Ref | Expression |
---|---|
frgrwopreglem2 | ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4280 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | frgrwopreg.a | . . . . . 6 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
3 | 2 | rabeq2i 3422 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝑉 ∧ (𝐷‘𝑥) = 𝐾)) |
4 | frgrwopreg.v | . . . . . . . . . . 11 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 4 | vdgfrgrgt2 28662 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑥 ∈ 𝑉) → (1 < (♯‘𝑉) → 2 ≤ ((VtxDeg‘𝐺)‘𝑥))) |
6 | 5 | imp 407 | . . . . . . . . 9 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑥 ∈ 𝑉) ∧ 1 < (♯‘𝑉)) → 2 ≤ ((VtxDeg‘𝐺)‘𝑥)) |
7 | breq2 5078 | . . . . . . . . . . 11 ⊢ (𝐾 = (𝐷‘𝑥) → (2 ≤ 𝐾 ↔ 2 ≤ (𝐷‘𝑥))) | |
8 | frgrwopreg.d | . . . . . . . . . . . . 13 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
9 | 8 | fveq1i 6775 | . . . . . . . . . . . 12 ⊢ (𝐷‘𝑥) = ((VtxDeg‘𝐺)‘𝑥) |
10 | 9 | breq2i 5082 | . . . . . . . . . . 11 ⊢ (2 ≤ (𝐷‘𝑥) ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥)) |
11 | 7, 10 | bitrdi 287 | . . . . . . . . . 10 ⊢ (𝐾 = (𝐷‘𝑥) → (2 ≤ 𝐾 ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥))) |
12 | 11 | eqcoms 2746 | . . . . . . . . 9 ⊢ ((𝐷‘𝑥) = 𝐾 → (2 ≤ 𝐾 ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥))) |
13 | 6, 12 | syl5ibrcom 246 | . . . . . . . 8 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑥 ∈ 𝑉) ∧ 1 < (♯‘𝑉)) → ((𝐷‘𝑥) = 𝐾 → 2 ≤ 𝐾)) |
14 | 13 | exp31 420 | . . . . . . 7 ⊢ (𝐺 ∈ FriendGraph → (𝑥 ∈ 𝑉 → (1 < (♯‘𝑉) → ((𝐷‘𝑥) = 𝐾 → 2 ≤ 𝐾)))) |
15 | 14 | com14 96 | . . . . . 6 ⊢ ((𝐷‘𝑥) = 𝐾 → (𝑥 ∈ 𝑉 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))) |
16 | 15 | impcom 408 | . . . . 5 ⊢ ((𝑥 ∈ 𝑉 ∧ (𝐷‘𝑥) = 𝐾) → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
17 | 3, 16 | sylbi 216 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
18 | 17 | exlimiv 1933 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
19 | 1, 18 | sylbi 216 | . 2 ⊢ (𝐴 ≠ ∅ → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
20 | 19 | 3imp31 1111 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 {crab 3068 ∖ cdif 3884 ∅c0 4256 class class class wbr 5074 ‘cfv 6433 1c1 10872 < clt 11009 ≤ cle 11010 2c2 12028 ♯chash 14044 Vtxcvtx 27366 VtxDegcvtxdg 27832 FriendGraph cfrgr 28622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-xadd 12849 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-s2 14561 df-s3 14562 df-edg 27418 df-uhgr 27428 df-upgr 27452 df-umgr 27453 df-uspgr 27520 df-usgr 27521 df-vtxdg 27833 df-wlks 27966 df-wlkson 27967 df-trls 28060 df-trlson 28061 df-pths 28084 df-spths 28085 df-pthson 28086 df-spthson 28087 df-conngr 28551 df-frgr 28623 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |