![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrwopreglem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for frgrwopreg 30205. If the set 𝐴 of vertices of degree 𝐾 is not empty in a friendship graph with at least two vertices, then 𝐾 must be greater than 1 . This is only an observation, which is not required for the proof the friendship theorem. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 2-Jan-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
Ref | Expression |
---|---|
frgrwopreglem2 | ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4346 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | frgrwopreg.a | . . . . . 6 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
3 | 2 | reqabi 3441 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝑉 ∧ (𝐷‘𝑥) = 𝐾)) |
4 | frgrwopreg.v | . . . . . . . . . . 11 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 4 | vdgfrgrgt2 30180 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑥 ∈ 𝑉) → (1 < (♯‘𝑉) → 2 ≤ ((VtxDeg‘𝐺)‘𝑥))) |
6 | 5 | imp 405 | . . . . . . . . 9 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑥 ∈ 𝑉) ∧ 1 < (♯‘𝑉)) → 2 ≤ ((VtxDeg‘𝐺)‘𝑥)) |
7 | breq2 5153 | . . . . . . . . . . 11 ⊢ (𝐾 = (𝐷‘𝑥) → (2 ≤ 𝐾 ↔ 2 ≤ (𝐷‘𝑥))) | |
8 | frgrwopreg.d | . . . . . . . . . . . . 13 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
9 | 8 | fveq1i 6897 | . . . . . . . . . . . 12 ⊢ (𝐷‘𝑥) = ((VtxDeg‘𝐺)‘𝑥) |
10 | 9 | breq2i 5157 | . . . . . . . . . . 11 ⊢ (2 ≤ (𝐷‘𝑥) ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥)) |
11 | 7, 10 | bitrdi 286 | . . . . . . . . . 10 ⊢ (𝐾 = (𝐷‘𝑥) → (2 ≤ 𝐾 ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥))) |
12 | 11 | eqcoms 2733 | . . . . . . . . 9 ⊢ ((𝐷‘𝑥) = 𝐾 → (2 ≤ 𝐾 ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥))) |
13 | 6, 12 | syl5ibrcom 246 | . . . . . . . 8 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑥 ∈ 𝑉) ∧ 1 < (♯‘𝑉)) → ((𝐷‘𝑥) = 𝐾 → 2 ≤ 𝐾)) |
14 | 13 | exp31 418 | . . . . . . 7 ⊢ (𝐺 ∈ FriendGraph → (𝑥 ∈ 𝑉 → (1 < (♯‘𝑉) → ((𝐷‘𝑥) = 𝐾 → 2 ≤ 𝐾)))) |
15 | 14 | com14 96 | . . . . . 6 ⊢ ((𝐷‘𝑥) = 𝐾 → (𝑥 ∈ 𝑉 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))) |
16 | 15 | impcom 406 | . . . . 5 ⊢ ((𝑥 ∈ 𝑉 ∧ (𝐷‘𝑥) = 𝐾) → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
17 | 3, 16 | sylbi 216 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
18 | 17 | exlimiv 1925 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
19 | 1, 18 | sylbi 216 | . 2 ⊢ (𝐴 ≠ ∅ → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
20 | 19 | 3imp31 1109 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2929 {crab 3418 ∖ cdif 3941 ∅c0 4322 class class class wbr 5149 ‘cfv 6549 1c1 11141 < clt 11280 ≤ cle 11281 2c2 12300 ♯chash 14325 Vtxcvtx 28881 VtxDegcvtxdg 29351 FriendGraph cfrgr 30140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9926 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-xnn0 12578 df-z 12592 df-uz 12856 df-xadd 13128 df-fz 13520 df-fzo 13663 df-hash 14326 df-word 14501 df-concat 14557 df-s1 14582 df-s2 14835 df-s3 14836 df-edg 28933 df-uhgr 28943 df-upgr 28967 df-umgr 28968 df-uspgr 29035 df-usgr 29036 df-vtxdg 29352 df-wlks 29485 df-wlkson 29486 df-trls 29578 df-trlson 29579 df-pths 29602 df-spths 29603 df-pthson 29604 df-spthson 29605 df-conngr 30069 df-frgr 30141 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |