![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrwopreglem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for frgrwopreg 30189. If the set π΄ of vertices of degree πΎ is not empty in a friendship graph with at least two vertices, then πΎ must be greater than 1 . This is only an observation, which is not required for the proof the friendship theorem. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 2-Jan-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | β’ π = (VtxβπΊ) |
frgrwopreg.d | β’ π· = (VtxDegβπΊ) |
frgrwopreg.a | β’ π΄ = {π₯ β π β£ (π·βπ₯) = πΎ} |
frgrwopreg.b | β’ π΅ = (π β π΄) |
Ref | Expression |
---|---|
frgrwopreglem2 | β’ ((πΊ β FriendGraph β§ 1 < (β―βπ) β§ π΄ β β ) β 2 β€ πΎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4347 | . . 3 β’ (π΄ β β β βπ₯ π₯ β π΄) | |
2 | frgrwopreg.a | . . . . . 6 β’ π΄ = {π₯ β π β£ (π·βπ₯) = πΎ} | |
3 | 2 | reqabi 3442 | . . . . 5 β’ (π₯ β π΄ β (π₯ β π β§ (π·βπ₯) = πΎ)) |
4 | frgrwopreg.v | . . . . . . . . . . 11 β’ π = (VtxβπΊ) | |
5 | 4 | vdgfrgrgt2 30164 | . . . . . . . . . 10 β’ ((πΊ β FriendGraph β§ π₯ β π) β (1 < (β―βπ) β 2 β€ ((VtxDegβπΊ)βπ₯))) |
6 | 5 | imp 405 | . . . . . . . . 9 β’ (((πΊ β FriendGraph β§ π₯ β π) β§ 1 < (β―βπ)) β 2 β€ ((VtxDegβπΊ)βπ₯)) |
7 | breq2 5152 | . . . . . . . . . . 11 β’ (πΎ = (π·βπ₯) β (2 β€ πΎ β 2 β€ (π·βπ₯))) | |
8 | frgrwopreg.d | . . . . . . . . . . . . 13 β’ π· = (VtxDegβπΊ) | |
9 | 8 | fveq1i 6895 | . . . . . . . . . . . 12 β’ (π·βπ₯) = ((VtxDegβπΊ)βπ₯) |
10 | 9 | breq2i 5156 | . . . . . . . . . . 11 β’ (2 β€ (π·βπ₯) β 2 β€ ((VtxDegβπΊ)βπ₯)) |
11 | 7, 10 | bitrdi 286 | . . . . . . . . . 10 β’ (πΎ = (π·βπ₯) β (2 β€ πΎ β 2 β€ ((VtxDegβπΊ)βπ₯))) |
12 | 11 | eqcoms 2733 | . . . . . . . . 9 β’ ((π·βπ₯) = πΎ β (2 β€ πΎ β 2 β€ ((VtxDegβπΊ)βπ₯))) |
13 | 6, 12 | syl5ibrcom 246 | . . . . . . . 8 β’ (((πΊ β FriendGraph β§ π₯ β π) β§ 1 < (β―βπ)) β ((π·βπ₯) = πΎ β 2 β€ πΎ)) |
14 | 13 | exp31 418 | . . . . . . 7 β’ (πΊ β FriendGraph β (π₯ β π β (1 < (β―βπ) β ((π·βπ₯) = πΎ β 2 β€ πΎ)))) |
15 | 14 | com14 96 | . . . . . 6 β’ ((π·βπ₯) = πΎ β (π₯ β π β (1 < (β―βπ) β (πΊ β FriendGraph β 2 β€ πΎ)))) |
16 | 15 | impcom 406 | . . . . 5 β’ ((π₯ β π β§ (π·βπ₯) = πΎ) β (1 < (β―βπ) β (πΊ β FriendGraph β 2 β€ πΎ))) |
17 | 3, 16 | sylbi 216 | . . . 4 β’ (π₯ β π΄ β (1 < (β―βπ) β (πΊ β FriendGraph β 2 β€ πΎ))) |
18 | 17 | exlimiv 1925 | . . 3 β’ (βπ₯ π₯ β π΄ β (1 < (β―βπ) β (πΊ β FriendGraph β 2 β€ πΎ))) |
19 | 1, 18 | sylbi 216 | . 2 β’ (π΄ β β β (1 < (β―βπ) β (πΊ β FriendGraph β 2 β€ πΎ))) |
20 | 19 | 3imp31 1109 | 1 β’ ((πΊ β FriendGraph β§ 1 < (β―βπ) β§ π΄ β β ) β 2 β€ πΎ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1084 = wceq 1533 βwex 1773 β wcel 2098 β wne 2930 {crab 3419 β cdif 3942 β c0 4323 class class class wbr 5148 βcfv 6547 1c1 11139 < clt 11278 β€ cle 11279 2c2 12297 β―chash 14321 Vtxcvtx 28865 VtxDegcvtxdg 29335 FriendGraph cfrgr 30124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8723 df-map 8845 df-pm 8846 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-dju 9924 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-xnn0 12575 df-z 12589 df-uz 12853 df-xadd 13125 df-fz 13517 df-fzo 13660 df-hash 14322 df-word 14497 df-concat 14553 df-s1 14578 df-s2 14831 df-s3 14832 df-edg 28917 df-uhgr 28927 df-upgr 28951 df-umgr 28952 df-uspgr 29019 df-usgr 29020 df-vtxdg 29336 df-wlks 29469 df-wlkson 29470 df-trls 29562 df-trlson 29563 df-pths 29586 df-spths 29587 df-pthson 29588 df-spthson 29589 df-conngr 30053 df-frgr 30125 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |