| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrwopreglem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for frgrwopreg 30270. If the set 𝐴 of vertices of degree 𝐾 is not empty in a friendship graph with at least two vertices, then 𝐾 must be greater than 1 . This is only an observation, which is not required for the proof the friendship theorem. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
| frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
| Ref | Expression |
|---|---|
| frgrwopreglem2 | ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4333 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | frgrwopreg.a | . . . . . 6 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
| 3 | 2 | reqabi 3443 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝑉 ∧ (𝐷‘𝑥) = 𝐾)) |
| 4 | frgrwopreg.v | . . . . . . . . . . 11 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | 4 | vdgfrgrgt2 30245 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑥 ∈ 𝑉) → (1 < (♯‘𝑉) → 2 ≤ ((VtxDeg‘𝐺)‘𝑥))) |
| 6 | 5 | imp 406 | . . . . . . . . 9 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑥 ∈ 𝑉) ∧ 1 < (♯‘𝑉)) → 2 ≤ ((VtxDeg‘𝐺)‘𝑥)) |
| 7 | breq2 5127 | . . . . . . . . . . 11 ⊢ (𝐾 = (𝐷‘𝑥) → (2 ≤ 𝐾 ↔ 2 ≤ (𝐷‘𝑥))) | |
| 8 | frgrwopreg.d | . . . . . . . . . . . . 13 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 9 | 8 | fveq1i 6887 | . . . . . . . . . . . 12 ⊢ (𝐷‘𝑥) = ((VtxDeg‘𝐺)‘𝑥) |
| 10 | 9 | breq2i 5131 | . . . . . . . . . . 11 ⊢ (2 ≤ (𝐷‘𝑥) ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥)) |
| 11 | 7, 10 | bitrdi 287 | . . . . . . . . . 10 ⊢ (𝐾 = (𝐷‘𝑥) → (2 ≤ 𝐾 ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥))) |
| 12 | 11 | eqcoms 2742 | . . . . . . . . 9 ⊢ ((𝐷‘𝑥) = 𝐾 → (2 ≤ 𝐾 ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥))) |
| 13 | 6, 12 | syl5ibrcom 247 | . . . . . . . 8 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑥 ∈ 𝑉) ∧ 1 < (♯‘𝑉)) → ((𝐷‘𝑥) = 𝐾 → 2 ≤ 𝐾)) |
| 14 | 13 | exp31 419 | . . . . . . 7 ⊢ (𝐺 ∈ FriendGraph → (𝑥 ∈ 𝑉 → (1 < (♯‘𝑉) → ((𝐷‘𝑥) = 𝐾 → 2 ≤ 𝐾)))) |
| 15 | 14 | com14 96 | . . . . . 6 ⊢ ((𝐷‘𝑥) = 𝐾 → (𝑥 ∈ 𝑉 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))) |
| 16 | 15 | impcom 407 | . . . . 5 ⊢ ((𝑥 ∈ 𝑉 ∧ (𝐷‘𝑥) = 𝐾) → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
| 17 | 3, 16 | sylbi 217 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
| 18 | 17 | exlimiv 1929 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
| 19 | 1, 18 | sylbi 217 | . 2 ⊢ (𝐴 ≠ ∅ → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
| 20 | 19 | 3imp31 1111 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ≠ wne 2931 {crab 3419 ∖ cdif 3928 ∅c0 4313 class class class wbr 5123 ‘cfv 6541 1c1 11138 < clt 11277 ≤ cle 11278 2c2 12303 ♯chash 14351 Vtxcvtx 28941 VtxDegcvtxdg 29411 FriendGraph cfrgr 30205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-oadd 8492 df-er 8727 df-map 8850 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-dju 9923 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-xnn0 12583 df-z 12597 df-uz 12861 df-xadd 13137 df-fz 13530 df-fzo 13677 df-hash 14352 df-word 14535 df-concat 14591 df-s1 14616 df-s2 14869 df-s3 14870 df-edg 28993 df-uhgr 29003 df-upgr 29027 df-umgr 29028 df-uspgr 29095 df-usgr 29096 df-vtxdg 29412 df-wlks 29545 df-wlkson 29546 df-trls 29638 df-trlson 29639 df-pths 29662 df-spths 29663 df-pthson 29664 df-spthson 29665 df-conngr 30134 df-frgr 30206 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |