MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem2 Structured version   Visualization version   GIF version

Theorem frgrwopreglem2 30342
Description: Lemma 2 for frgrwopreg 30352. If the set 𝐴 of vertices of degree 𝐾 is not empty in a friendship graph with at least two vertices, then 𝐾 must be greater than 1 . This is only an observation, which is not required for the proof the friendship theorem. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 2-Jan-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
Assertion
Ref Expression
frgrwopreglem2 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)

Proof of Theorem frgrwopreglem2
StepHypRef Expression
1 n0 4359 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 frgrwopreg.a . . . . . 6 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
32reqabi 3457 . . . . 5 (𝑥𝐴 ↔ (𝑥𝑉 ∧ (𝐷𝑥) = 𝐾))
4 frgrwopreg.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
54vdgfrgrgt2 30327 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑥𝑉) → (1 < (♯‘𝑉) → 2 ≤ ((VtxDeg‘𝐺)‘𝑥)))
65imp 406 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑥𝑉) ∧ 1 < (♯‘𝑉)) → 2 ≤ ((VtxDeg‘𝐺)‘𝑥))
7 breq2 5152 . . . . . . . . . . 11 (𝐾 = (𝐷𝑥) → (2 ≤ 𝐾 ↔ 2 ≤ (𝐷𝑥)))
8 frgrwopreg.d . . . . . . . . . . . . 13 𝐷 = (VtxDeg‘𝐺)
98fveq1i 6908 . . . . . . . . . . . 12 (𝐷𝑥) = ((VtxDeg‘𝐺)‘𝑥)
109breq2i 5156 . . . . . . . . . . 11 (2 ≤ (𝐷𝑥) ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥))
117, 10bitrdi 287 . . . . . . . . . 10 (𝐾 = (𝐷𝑥) → (2 ≤ 𝐾 ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥)))
1211eqcoms 2743 . . . . . . . . 9 ((𝐷𝑥) = 𝐾 → (2 ≤ 𝐾 ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥)))
136, 12syl5ibrcom 247 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ 𝑥𝑉) ∧ 1 < (♯‘𝑉)) → ((𝐷𝑥) = 𝐾 → 2 ≤ 𝐾))
1413exp31 419 . . . . . . 7 (𝐺 ∈ FriendGraph → (𝑥𝑉 → (1 < (♯‘𝑉) → ((𝐷𝑥) = 𝐾 → 2 ≤ 𝐾))))
1514com14 96 . . . . . 6 ((𝐷𝑥) = 𝐾 → (𝑥𝑉 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))))
1615impcom 407 . . . . 5 ((𝑥𝑉 ∧ (𝐷𝑥) = 𝐾) → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))
173, 16sylbi 217 . . . 4 (𝑥𝐴 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))
1817exlimiv 1928 . . 3 (∃𝑥 𝑥𝐴 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))
191, 18sylbi 217 . 2 (𝐴 ≠ ∅ → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))
20193imp31 1111 1 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wne 2938  {crab 3433  cdif 3960  c0 4339   class class class wbr 5148  cfv 6563  1c1 11154   < clt 11293  cle 11294  2c2 12319  chash 14366  Vtxcvtx 29028  VtxDegcvtxdg 29498   FriendGraph cfrgr 30287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-xadd 13153  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-s2 14884  df-s3 14885  df-edg 29080  df-uhgr 29090  df-upgr 29114  df-umgr 29115  df-uspgr 29182  df-usgr 29183  df-vtxdg 29499  df-wlks 29632  df-wlkson 29633  df-trls 29725  df-trlson 29726  df-pths 29749  df-spths 29750  df-pthson 29751  df-spthson 29752  df-conngr 30216  df-frgr 30288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator