![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrwopreglem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for frgrwopreg 30355. If the set 𝐴 of vertices of degree 𝐾 is not empty in a friendship graph with at least two vertices, then 𝐾 must be greater than 1 . This is only an observation, which is not required for the proof the friendship theorem. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 2-Jan-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
Ref | Expression |
---|---|
frgrwopreglem2 | ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4376 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | frgrwopreg.a | . . . . . 6 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
3 | 2 | reqabi 3467 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝑉 ∧ (𝐷‘𝑥) = 𝐾)) |
4 | frgrwopreg.v | . . . . . . . . . . 11 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 4 | vdgfrgrgt2 30330 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑥 ∈ 𝑉) → (1 < (♯‘𝑉) → 2 ≤ ((VtxDeg‘𝐺)‘𝑥))) |
6 | 5 | imp 406 | . . . . . . . . 9 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑥 ∈ 𝑉) ∧ 1 < (♯‘𝑉)) → 2 ≤ ((VtxDeg‘𝐺)‘𝑥)) |
7 | breq2 5170 | . . . . . . . . . . 11 ⊢ (𝐾 = (𝐷‘𝑥) → (2 ≤ 𝐾 ↔ 2 ≤ (𝐷‘𝑥))) | |
8 | frgrwopreg.d | . . . . . . . . . . . . 13 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
9 | 8 | fveq1i 6921 | . . . . . . . . . . . 12 ⊢ (𝐷‘𝑥) = ((VtxDeg‘𝐺)‘𝑥) |
10 | 9 | breq2i 5174 | . . . . . . . . . . 11 ⊢ (2 ≤ (𝐷‘𝑥) ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥)) |
11 | 7, 10 | bitrdi 287 | . . . . . . . . . 10 ⊢ (𝐾 = (𝐷‘𝑥) → (2 ≤ 𝐾 ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥))) |
12 | 11 | eqcoms 2748 | . . . . . . . . 9 ⊢ ((𝐷‘𝑥) = 𝐾 → (2 ≤ 𝐾 ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥))) |
13 | 6, 12 | syl5ibrcom 247 | . . . . . . . 8 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑥 ∈ 𝑉) ∧ 1 < (♯‘𝑉)) → ((𝐷‘𝑥) = 𝐾 → 2 ≤ 𝐾)) |
14 | 13 | exp31 419 | . . . . . . 7 ⊢ (𝐺 ∈ FriendGraph → (𝑥 ∈ 𝑉 → (1 < (♯‘𝑉) → ((𝐷‘𝑥) = 𝐾 → 2 ≤ 𝐾)))) |
15 | 14 | com14 96 | . . . . . 6 ⊢ ((𝐷‘𝑥) = 𝐾 → (𝑥 ∈ 𝑉 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))) |
16 | 15 | impcom 407 | . . . . 5 ⊢ ((𝑥 ∈ 𝑉 ∧ (𝐷‘𝑥) = 𝐾) → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
17 | 3, 16 | sylbi 217 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
18 | 17 | exlimiv 1929 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
19 | 1, 18 | sylbi 217 | . 2 ⊢ (𝐴 ≠ ∅ → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
20 | 19 | 3imp31 1112 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 {crab 3443 ∖ cdif 3973 ∅c0 4352 class class class wbr 5166 ‘cfv 6573 1c1 11185 < clt 11324 ≤ cle 11325 2c2 12348 ♯chash 14379 Vtxcvtx 29031 VtxDegcvtxdg 29501 FriendGraph cfrgr 30290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-xadd 13176 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-s2 14897 df-s3 14898 df-edg 29083 df-uhgr 29093 df-upgr 29117 df-umgr 29118 df-uspgr 29185 df-usgr 29186 df-vtxdg 29502 df-wlks 29635 df-wlkson 29636 df-trls 29728 df-trlson 29729 df-pths 29752 df-spths 29753 df-pthson 29754 df-spthson 29755 df-conngr 30219 df-frgr 30291 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |