MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem2 Structured version   Visualization version   GIF version

Theorem frgrwopreglem2 28578
Description: Lemma 2 for frgrwopreg 28588. If the set 𝐴 of vertices of degree 𝐾 is not empty in a friendship graph with at least two vertices, then 𝐾 must be greater than 1 . This is only an observation, which is not required for the proof the friendship theorem. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 2-Jan-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
Assertion
Ref Expression
frgrwopreglem2 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)

Proof of Theorem frgrwopreglem2
StepHypRef Expression
1 n0 4277 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 frgrwopreg.a . . . . . 6 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
32rabeq2i 3412 . . . . 5 (𝑥𝐴 ↔ (𝑥𝑉 ∧ (𝐷𝑥) = 𝐾))
4 frgrwopreg.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
54vdgfrgrgt2 28563 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑥𝑉) → (1 < (♯‘𝑉) → 2 ≤ ((VtxDeg‘𝐺)‘𝑥)))
65imp 406 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑥𝑉) ∧ 1 < (♯‘𝑉)) → 2 ≤ ((VtxDeg‘𝐺)‘𝑥))
7 breq2 5074 . . . . . . . . . . 11 (𝐾 = (𝐷𝑥) → (2 ≤ 𝐾 ↔ 2 ≤ (𝐷𝑥)))
8 frgrwopreg.d . . . . . . . . . . . . 13 𝐷 = (VtxDeg‘𝐺)
98fveq1i 6757 . . . . . . . . . . . 12 (𝐷𝑥) = ((VtxDeg‘𝐺)‘𝑥)
109breq2i 5078 . . . . . . . . . . 11 (2 ≤ (𝐷𝑥) ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥))
117, 10bitrdi 286 . . . . . . . . . 10 (𝐾 = (𝐷𝑥) → (2 ≤ 𝐾 ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥)))
1211eqcoms 2746 . . . . . . . . 9 ((𝐷𝑥) = 𝐾 → (2 ≤ 𝐾 ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥)))
136, 12syl5ibrcom 246 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ 𝑥𝑉) ∧ 1 < (♯‘𝑉)) → ((𝐷𝑥) = 𝐾 → 2 ≤ 𝐾))
1413exp31 419 . . . . . . 7 (𝐺 ∈ FriendGraph → (𝑥𝑉 → (1 < (♯‘𝑉) → ((𝐷𝑥) = 𝐾 → 2 ≤ 𝐾))))
1514com14 96 . . . . . 6 ((𝐷𝑥) = 𝐾 → (𝑥𝑉 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))))
1615impcom 407 . . . . 5 ((𝑥𝑉 ∧ (𝐷𝑥) = 𝐾) → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))
173, 16sylbi 216 . . . 4 (𝑥𝐴 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))
1817exlimiv 1934 . . 3 (∃𝑥 𝑥𝐴 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))
191, 18sylbi 216 . 2 (𝐴 ≠ ∅ → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))
20193imp31 1110 1 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  {crab 3067  cdif 3880  c0 4253   class class class wbr 5070  cfv 6418  1c1 10803   < clt 10940  cle 10941  2c2 11958  chash 13972  Vtxcvtx 27269  VtxDegcvtxdg 27735   FriendGraph cfrgr 28523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-xadd 12778  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-edg 27321  df-uhgr 27331  df-upgr 27355  df-umgr 27356  df-uspgr 27423  df-usgr 27424  df-vtxdg 27736  df-wlks 27869  df-wlkson 27870  df-trls 27962  df-trlson 27963  df-pths 27985  df-spths 27986  df-pthson 27987  df-spthson 27988  df-conngr 28452  df-frgr 28524
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator