| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrwopreglem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for frgrwopreg 30303. If the set 𝐴 of vertices of degree 𝐾 is not empty in a friendship graph with at least two vertices, then 𝐾 must be greater than 1 . This is only an observation, which is not required for the proof the friendship theorem. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
| frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
| Ref | Expression |
|---|---|
| frgrwopreglem2 | ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4312 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | frgrwopreg.a | . . . . . 6 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
| 3 | 2 | reqabi 3426 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝑉 ∧ (𝐷‘𝑥) = 𝐾)) |
| 4 | frgrwopreg.v | . . . . . . . . . . 11 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | 4 | vdgfrgrgt2 30278 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑥 ∈ 𝑉) → (1 < (♯‘𝑉) → 2 ≤ ((VtxDeg‘𝐺)‘𝑥))) |
| 6 | 5 | imp 406 | . . . . . . . . 9 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑥 ∈ 𝑉) ∧ 1 < (♯‘𝑉)) → 2 ≤ ((VtxDeg‘𝐺)‘𝑥)) |
| 7 | breq2 5106 | . . . . . . . . . . 11 ⊢ (𝐾 = (𝐷‘𝑥) → (2 ≤ 𝐾 ↔ 2 ≤ (𝐷‘𝑥))) | |
| 8 | frgrwopreg.d | . . . . . . . . . . . . 13 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 9 | 8 | fveq1i 6841 | . . . . . . . . . . . 12 ⊢ (𝐷‘𝑥) = ((VtxDeg‘𝐺)‘𝑥) |
| 10 | 9 | breq2i 5110 | . . . . . . . . . . 11 ⊢ (2 ≤ (𝐷‘𝑥) ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥)) |
| 11 | 7, 10 | bitrdi 287 | . . . . . . . . . 10 ⊢ (𝐾 = (𝐷‘𝑥) → (2 ≤ 𝐾 ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥))) |
| 12 | 11 | eqcoms 2737 | . . . . . . . . 9 ⊢ ((𝐷‘𝑥) = 𝐾 → (2 ≤ 𝐾 ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥))) |
| 13 | 6, 12 | syl5ibrcom 247 | . . . . . . . 8 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑥 ∈ 𝑉) ∧ 1 < (♯‘𝑉)) → ((𝐷‘𝑥) = 𝐾 → 2 ≤ 𝐾)) |
| 14 | 13 | exp31 419 | . . . . . . 7 ⊢ (𝐺 ∈ FriendGraph → (𝑥 ∈ 𝑉 → (1 < (♯‘𝑉) → ((𝐷‘𝑥) = 𝐾 → 2 ≤ 𝐾)))) |
| 15 | 14 | com14 96 | . . . . . 6 ⊢ ((𝐷‘𝑥) = 𝐾 → (𝑥 ∈ 𝑉 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))) |
| 16 | 15 | impcom 407 | . . . . 5 ⊢ ((𝑥 ∈ 𝑉 ∧ (𝐷‘𝑥) = 𝐾) → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
| 17 | 3, 16 | sylbi 217 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
| 18 | 17 | exlimiv 1930 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
| 19 | 1, 18 | sylbi 217 | . 2 ⊢ (𝐴 ≠ ∅ → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))) |
| 20 | 19 | 3imp31 1111 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 {crab 3402 ∖ cdif 3908 ∅c0 4292 class class class wbr 5102 ‘cfv 6499 1c1 11047 < clt 11186 ≤ cle 11187 2c2 12219 ♯chash 14273 Vtxcvtx 28977 VtxDegcvtxdg 29447 FriendGraph cfrgr 30238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9832 df-card 9870 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-3 12228 df-n0 12421 df-xnn0 12494 df-z 12508 df-uz 12772 df-xadd 13051 df-fz 13447 df-fzo 13594 df-hash 14274 df-word 14457 df-concat 14514 df-s1 14539 df-s2 14791 df-s3 14792 df-edg 29029 df-uhgr 29039 df-upgr 29063 df-umgr 29064 df-uspgr 29131 df-usgr 29132 df-vtxdg 29448 df-wlks 29581 df-wlkson 29582 df-trls 29672 df-trlson 29673 df-pths 29695 df-spths 29696 df-pthson 29697 df-spthson 29698 df-conngr 30167 df-frgr 30239 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |