MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummatr01lem4 Structured version   Visualization version   GIF version

Theorem gsummatr01lem4 22601
Description: Lemma 2 for gsummatr01 22602. (Contributed by AV, 8-Jan-2019.)
Hypotheses
Ref Expression
gsummatr01.p 𝑃 = (Base‘(SymGrp‘𝑁))
gsummatr01.r 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
gsummatr01.0 0 = (0g𝐺)
gsummatr01.s 𝑆 = (Base‘𝐺)
Assertion
Ref Expression
gsummatr01lem4 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑛   𝐵,𝑖,𝑗,𝑛   𝑖,𝐺,𝑗,𝑛   𝑖,𝐾,𝑗,𝑛   𝐾,𝑟   𝑖,𝐿,𝑗,𝑛   𝐿,𝑟   𝑖,𝑁,𝑗,𝑛   𝑃,𝑟   𝑄,𝑟   𝑄,𝑖,𝑗,𝑛   𝑅,𝑖,𝑗,𝑛   𝑆,𝑖,𝑗,𝑛   0 ,𝑖,𝑗,𝑛
Allowed substitution hints:   𝐴(𝑟)   𝐵(𝑟)   𝑃(𝑖,𝑗,𝑛)   𝑅(𝑟)   𝑆(𝑟)   𝐺(𝑟)   𝑁(𝑟)   0 (𝑟)

Proof of Theorem gsummatr01lem4
StepHypRef Expression
1 eqidd 2737 . . . . . . 7 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))))
2 eqeq1 2740 . . . . . . . . . 10 (𝑖 = 𝑛 → (𝑖 = 𝐾𝑛 = 𝐾))
32adantr 480 . . . . . . . . 9 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑖 = 𝐾𝑛 = 𝐾))
4 eqeq1 2740 . . . . . . . . . . 11 (𝑗 = (𝑄𝑛) → (𝑗 = 𝐿 ↔ (𝑄𝑛) = 𝐿))
54adantl 481 . . . . . . . . . 10 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑗 = 𝐿 ↔ (𝑄𝑛) = 𝐿))
65ifbid 4529 . . . . . . . . 9 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄𝑛) = 𝐿, 0 , 𝐵))
7 oveq12 7419 . . . . . . . . 9 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑖𝐴𝑗) = (𝑛𝐴(𝑄𝑛)))
83, 6, 7ifbieq12d 4534 . . . . . . . 8 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))))
9 eldifsni 4771 . . . . . . . . . . 11 (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛𝐾)
109neneqd 2938 . . . . . . . . . 10 (𝑛 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝑛 = 𝐾)
1110iffalsed 4516 . . . . . . . . 9 (𝑛 ∈ (𝑁 ∖ {𝐾}) → if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))) = (𝑛𝐴(𝑄𝑛)))
1211adantl 481 . . . . . . . 8 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))) = (𝑛𝐴(𝑄𝑛)))
138, 12sylan9eqr 2793 . . . . . . 7 (((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ (𝑖 = 𝑛𝑗 = (𝑄𝑛))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = (𝑛𝐴(𝑄𝑛)))
14 eldifi 4111 . . . . . . . 8 (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛𝑁)
1514adantl 481 . . . . . . 7 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛𝑁)
16 gsummatr01.p . . . . . . . . 9 𝑃 = (Base‘(SymGrp‘𝑁))
17 gsummatr01.r . . . . . . . . 9 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
1816, 17gsummatr01lem1 22598 . . . . . . . 8 ((𝑄𝑅𝑛𝑁) → (𝑄𝑛) ∈ 𝑁)
1914, 18sylan2 593 . . . . . . 7 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ∈ 𝑁)
20 ovexd 7445 . . . . . . 7 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ V)
211, 13, 15, 19, 20ovmpod 7564 . . . . . 6 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
2221ex 412 . . . . 5 (𝑄𝑅 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛))))
23223ad2ant3 1135 . . . 4 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛))))
24233ad2ant3 1135 . . 3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛))))
2524imp 406 . 2 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
26 eqidd 2737 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗)))
277adantl 481 . . 3 (((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ (𝑖 = 𝑛𝑗 = (𝑄𝑛))) → (𝑖𝐴𝑗) = (𝑛𝐴(𝑄𝑛)))
28 eqidd 2737 . . 3 (((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ 𝑖 = 𝑛) → (𝑁 ∖ {𝐿}) = (𝑁 ∖ {𝐿}))
29 simpr 484 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛 ∈ (𝑁 ∖ {𝐾}))
30 fveq1 6880 . . . . . . . . . 10 (𝑟 = 𝑄 → (𝑟𝐾) = (𝑄𝐾))
3130eqeq1d 2738 . . . . . . . . 9 (𝑟 = 𝑄 → ((𝑟𝐾) = 𝐿 ↔ (𝑄𝐾) = 𝐿))
3231, 17elrab2 3679 . . . . . . . 8 (𝑄𝑅 ↔ (𝑄𝑃 ∧ (𝑄𝐾) = 𝐿))
33 simpll 766 . . . . . . . . . . 11 (((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) → 𝑄𝑃)
34 eqid 2736 . . . . . . . . . . . 12 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3534, 16symgfv 19366 . . . . . . . . . . 11 ((𝑄𝑃𝑛𝑁) → (𝑄𝑛) ∈ 𝑁)
3633, 14, 35syl2an 596 . . . . . . . . . 10 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ∈ 𝑁)
3733adantr 480 . . . . . . . . . . . 12 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑄𝑃)
38 simplrr 777 . . . . . . . . . . . 12 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝐾𝑁)
3914adantl 481 . . . . . . . . . . . 12 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛𝑁)
4037, 38, 393jca 1128 . . . . . . . . . . 11 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑃𝐾𝑁𝑛𝑁))
41 simpllr 775 . . . . . . . . . . 11 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝐾) = 𝐿)
429adantl 481 . . . . . . . . . . 11 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛𝐾)
4334, 16symgfvne 19367 . . . . . . . . . . 11 ((𝑄𝑃𝐾𝑁𝑛𝑁) → ((𝑄𝐾) = 𝐿 → (𝑛𝐾 → (𝑄𝑛) ≠ 𝐿)))
4440, 41, 42, 43syl3c 66 . . . . . . . . . 10 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ≠ 𝐿)
4536, 44jca 511 . . . . . . . . 9 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿))
4645exp42 435 . . . . . . . 8 ((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) → (𝐿𝑁 → (𝐾𝑁 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿)))))
4732, 46sylbi 217 . . . . . . 7 (𝑄𝑅 → (𝐿𝑁 → (𝐾𝑁 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿)))))
48473imp31 1111 . . . . . 6 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿)))
49483ad2ant3 1135 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿)))
5049imp 406 . . . 4 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿))
51 eldifsn 4767 . . . 4 ((𝑄𝑛) ∈ (𝑁 ∖ {𝐿}) ↔ ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿))
5250, 51sylibr 234 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ∈ (𝑁 ∖ {𝐿}))
53 ovexd 7445 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ V)
54 nfv 1914 . . . . 5 𝑖(𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin)
55 nfra1 3270 . . . . . 6 𝑖𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆
56 nfcv 2899 . . . . . . 7 𝑖𝑆
5756nfel2 2918 . . . . . 6 𝑖 𝐵𝑆
5855, 57nfan 1899 . . . . 5 𝑖(∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆)
59 nfv 1914 . . . . 5 𝑖(𝐾𝑁𝐿𝑁𝑄𝑅)
6054, 58, 59nf3an 1901 . . . 4 𝑖((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅))
61 nfcv 2899 . . . . 5 𝑖(𝑁 ∖ {𝐾})
6261nfel2 2918 . . . 4 𝑖 𝑛 ∈ (𝑁 ∖ {𝐾})
6360, 62nfan 1899 . . 3 𝑖(((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾}))
64 nfv 1914 . . . . 5 𝑗(𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin)
65 nfra2w 3284 . . . . . 6 𝑗𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆
66 nfcv 2899 . . . . . . 7 𝑗𝑆
6766nfel2 2918 . . . . . 6 𝑗 𝐵𝑆
6865, 67nfan 1899 . . . . 5 𝑗(∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆)
69 nfv 1914 . . . . 5 𝑗(𝐾𝑁𝐿𝑁𝑄𝑅)
7064, 68, 69nf3an 1901 . . . 4 𝑗((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅))
71 nfcv 2899 . . . . 5 𝑗(𝑁 ∖ {𝐾})
7271nfel2 2918 . . . 4 𝑗 𝑛 ∈ (𝑁 ∖ {𝐾})
7370, 72nfan 1899 . . 3 𝑗(((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾}))
74 nfcv 2899 . . 3 𝑗𝑛
75 nfcv 2899 . . 3 𝑖(𝑄𝑛)
76 nfcv 2899 . . 3 𝑖(𝑛𝐴(𝑄𝑛))
77 nfcv 2899 . . 3 𝑗(𝑛𝐴(𝑄𝑛))
7826, 27, 28, 29, 52, 53, 63, 73, 74, 75, 76, 77ovmpodxf 7562 . 2 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
7925, 78eqtr4d 2774 1 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  {crab 3420  Vcvv 3464  cdif 3928  ifcif 4505  {csn 4606  cfv 6536  (class class class)co 7410  cmpo 7412  Fincfn 8964  Basecbs 17233  0gc0g 17458  SymGrpcsymg 19355  CMndccmn 19766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-tset 17295  df-efmnd 18852  df-symg 19356
This theorem is referenced by:  gsummatr01  22602
  Copyright terms: Public domain W3C validator