MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummatr01lem4 Structured version   Visualization version   GIF version

Theorem gsummatr01lem4 21587
Description: Lemma 2 for gsummatr01 21588. (Contributed by AV, 8-Jan-2019.)
Hypotheses
Ref Expression
gsummatr01.p 𝑃 = (Base‘(SymGrp‘𝑁))
gsummatr01.r 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
gsummatr01.0 0 = (0g𝐺)
gsummatr01.s 𝑆 = (Base‘𝐺)
Assertion
Ref Expression
gsummatr01lem4 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑛   𝐵,𝑖,𝑗,𝑛   𝑖,𝐺,𝑗,𝑛   𝑖,𝐾,𝑗,𝑛   𝐾,𝑟   𝑖,𝐿,𝑗,𝑛   𝐿,𝑟   𝑖,𝑁,𝑗,𝑛   𝑃,𝑟   𝑄,𝑟   𝑄,𝑖,𝑗,𝑛   𝑅,𝑖,𝑗,𝑛   𝑆,𝑖,𝑗,𝑛   0 ,𝑖,𝑗,𝑛
Allowed substitution hints:   𝐴(𝑟)   𝐵(𝑟)   𝑃(𝑖,𝑗,𝑛)   𝑅(𝑟)   𝑆(𝑟)   𝐺(𝑟)   𝑁(𝑟)   0 (𝑟)

Proof of Theorem gsummatr01lem4
StepHypRef Expression
1 eqidd 2740 . . . . . . 7 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))))
2 eqeq1 2743 . . . . . . . . . 10 (𝑖 = 𝑛 → (𝑖 = 𝐾𝑛 = 𝐾))
32adantr 484 . . . . . . . . 9 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑖 = 𝐾𝑛 = 𝐾))
4 eqeq1 2743 . . . . . . . . . . 11 (𝑗 = (𝑄𝑛) → (𝑗 = 𝐿 ↔ (𝑄𝑛) = 𝐿))
54adantl 485 . . . . . . . . . 10 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑗 = 𝐿 ↔ (𝑄𝑛) = 𝐿))
65ifbid 4479 . . . . . . . . 9 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄𝑛) = 𝐿, 0 , 𝐵))
7 oveq12 7244 . . . . . . . . 9 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑖𝐴𝑗) = (𝑛𝐴(𝑄𝑛)))
83, 6, 7ifbieq12d 4484 . . . . . . . 8 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))))
9 eldifsni 4720 . . . . . . . . . . 11 (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛𝐾)
109neneqd 2948 . . . . . . . . . 10 (𝑛 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝑛 = 𝐾)
1110iffalsed 4467 . . . . . . . . 9 (𝑛 ∈ (𝑁 ∖ {𝐾}) → if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))) = (𝑛𝐴(𝑄𝑛)))
1211adantl 485 . . . . . . . 8 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))) = (𝑛𝐴(𝑄𝑛)))
138, 12sylan9eqr 2802 . . . . . . 7 (((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ (𝑖 = 𝑛𝑗 = (𝑄𝑛))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = (𝑛𝐴(𝑄𝑛)))
14 eldifi 4058 . . . . . . . 8 (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛𝑁)
1514adantl 485 . . . . . . 7 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛𝑁)
16 gsummatr01.p . . . . . . . . 9 𝑃 = (Base‘(SymGrp‘𝑁))
17 gsummatr01.r . . . . . . . . 9 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
1816, 17gsummatr01lem1 21584 . . . . . . . 8 ((𝑄𝑅𝑛𝑁) → (𝑄𝑛) ∈ 𝑁)
1914, 18sylan2 596 . . . . . . 7 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ∈ 𝑁)
20 ovexd 7270 . . . . . . 7 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ V)
211, 13, 15, 19, 20ovmpod 7383 . . . . . 6 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
2221ex 416 . . . . 5 (𝑄𝑅 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛))))
23223ad2ant3 1137 . . . 4 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛))))
24233ad2ant3 1137 . . 3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛))))
2524imp 410 . 2 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
26 eqidd 2740 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗)))
277adantl 485 . . 3 (((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ (𝑖 = 𝑛𝑗 = (𝑄𝑛))) → (𝑖𝐴𝑗) = (𝑛𝐴(𝑄𝑛)))
28 eqidd 2740 . . 3 (((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ 𝑖 = 𝑛) → (𝑁 ∖ {𝐿}) = (𝑁 ∖ {𝐿}))
29 simpr 488 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛 ∈ (𝑁 ∖ {𝐾}))
30 fveq1 6738 . . . . . . . . . 10 (𝑟 = 𝑄 → (𝑟𝐾) = (𝑄𝐾))
3130eqeq1d 2741 . . . . . . . . 9 (𝑟 = 𝑄 → ((𝑟𝐾) = 𝐿 ↔ (𝑄𝐾) = 𝐿))
3231, 17elrab2 3620 . . . . . . . 8 (𝑄𝑅 ↔ (𝑄𝑃 ∧ (𝑄𝐾) = 𝐿))
33 simpll 767 . . . . . . . . . . 11 (((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) → 𝑄𝑃)
34 eqid 2739 . . . . . . . . . . . 12 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3534, 16symgfv 18805 . . . . . . . . . . 11 ((𝑄𝑃𝑛𝑁) → (𝑄𝑛) ∈ 𝑁)
3633, 14, 35syl2an 599 . . . . . . . . . 10 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ∈ 𝑁)
3733adantr 484 . . . . . . . . . . . 12 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑄𝑃)
38 simplrr 778 . . . . . . . . . . . 12 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝐾𝑁)
3914adantl 485 . . . . . . . . . . . 12 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛𝑁)
4037, 38, 393jca 1130 . . . . . . . . . . 11 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑃𝐾𝑁𝑛𝑁))
41 simpllr 776 . . . . . . . . . . 11 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝐾) = 𝐿)
429adantl 485 . . . . . . . . . . 11 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛𝐾)
4334, 16symgfvne 18806 . . . . . . . . . . 11 ((𝑄𝑃𝐾𝑁𝑛𝑁) → ((𝑄𝐾) = 𝐿 → (𝑛𝐾 → (𝑄𝑛) ≠ 𝐿)))
4440, 41, 42, 43syl3c 66 . . . . . . . . . 10 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ≠ 𝐿)
4536, 44jca 515 . . . . . . . . 9 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿))
4645exp42 439 . . . . . . . 8 ((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) → (𝐿𝑁 → (𝐾𝑁 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿)))))
4732, 46sylbi 220 . . . . . . 7 (𝑄𝑅 → (𝐿𝑁 → (𝐾𝑁 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿)))))
48473imp31 1114 . . . . . 6 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿)))
49483ad2ant3 1137 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿)))
5049imp 410 . . . 4 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿))
51 eldifsn 4717 . . . 4 ((𝑄𝑛) ∈ (𝑁 ∖ {𝐿}) ↔ ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿))
5250, 51sylibr 237 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ∈ (𝑁 ∖ {𝐿}))
53 ovexd 7270 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ V)
54 nfv 1922 . . . . 5 𝑖(𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin)
55 nfra1 3143 . . . . . 6 𝑖𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆
56 nfcv 2907 . . . . . . 7 𝑖𝑆
5756nfel2 2925 . . . . . 6 𝑖 𝐵𝑆
5855, 57nfan 1907 . . . . 5 𝑖(∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆)
59 nfv 1922 . . . . 5 𝑖(𝐾𝑁𝐿𝑁𝑄𝑅)
6054, 58, 59nf3an 1909 . . . 4 𝑖((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅))
61 nfcv 2907 . . . . 5 𝑖(𝑁 ∖ {𝐾})
6261nfel2 2925 . . . 4 𝑖 𝑛 ∈ (𝑁 ∖ {𝐾})
6360, 62nfan 1907 . . 3 𝑖(((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾}))
64 nfv 1922 . . . . 5 𝑗(𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin)
65 nfra2w 3152 . . . . . 6 𝑗𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆
66 nfcv 2907 . . . . . . 7 𝑗𝑆
6766nfel2 2925 . . . . . 6 𝑗 𝐵𝑆
6865, 67nfan 1907 . . . . 5 𝑗(∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆)
69 nfv 1922 . . . . 5 𝑗(𝐾𝑁𝐿𝑁𝑄𝑅)
7064, 68, 69nf3an 1909 . . . 4 𝑗((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅))
71 nfcv 2907 . . . . 5 𝑗(𝑁 ∖ {𝐾})
7271nfel2 2925 . . . 4 𝑗 𝑛 ∈ (𝑁 ∖ {𝐾})
7370, 72nfan 1907 . . 3 𝑗(((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾}))
74 nfcv 2907 . . 3 𝑗𝑛
75 nfcv 2907 . . 3 𝑖(𝑄𝑛)
76 nfcv 2907 . . 3 𝑖(𝑛𝐴(𝑄𝑛))
77 nfcv 2907 . . 3 𝑗(𝑛𝐴(𝑄𝑛))
7826, 27, 28, 29, 52, 53, 63, 73, 74, 75, 76, 77ovmpodxf 7381 . 2 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
7925, 78eqtr4d 2782 1 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2943  wral 3064  {crab 3068  Vcvv 3423  cdif 3880  ifcif 4456  {csn 4558  cfv 6401  (class class class)co 7235  cmpo 7237  Fincfn 8650  Basecbs 16793  0gc0g 16977  SymGrpcsymg 18792  CMndccmn 19203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545  ax-cnex 10815  ax-resscn 10816  ax-1cn 10817  ax-icn 10818  ax-addcl 10819  ax-addrcl 10820  ax-mulcl 10821  ax-mulrcl 10822  ax-mulcom 10823  ax-addass 10824  ax-mulass 10825  ax-distr 10826  ax-i2m1 10827  ax-1ne0 10828  ax-1rid 10829  ax-rnegex 10830  ax-rrecex 10831  ax-cnre 10832  ax-pre-lttri 10833  ax-pre-lttrn 10834  ax-pre-ltadd 10835  ax-pre-mulgt0 10836
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5179  df-id 5472  df-eprel 5478  df-po 5486  df-so 5487  df-fr 5527  df-we 5529  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-pred 6179  df-ord 6237  df-on 6238  df-lim 6239  df-suc 6240  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-riota 7192  df-ov 7238  df-oprab 7239  df-mpo 7240  df-om 7667  df-1st 7783  df-2nd 7784  df-wrecs 8071  df-recs 8132  df-rdg 8170  df-1o 8226  df-er 8415  df-map 8534  df-en 8651  df-dom 8652  df-sdom 8653  df-fin 8654  df-pnf 10899  df-mnf 10900  df-xr 10901  df-ltxr 10902  df-le 10903  df-sub 11094  df-neg 11095  df-nn 11861  df-2 11923  df-3 11924  df-4 11925  df-5 11926  df-6 11927  df-7 11928  df-8 11929  df-9 11930  df-n0 12121  df-z 12207  df-uz 12469  df-fz 13126  df-struct 16733  df-sets 16750  df-slot 16768  df-ndx 16778  df-base 16794  df-ress 16818  df-plusg 16848  df-tset 16854  df-efmnd 18329  df-symg 18793
This theorem is referenced by:  gsummatr01  21588
  Copyright terms: Public domain W3C validator