MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummatr01lem4 Structured version   Visualization version   GIF version

Theorem gsummatr01lem4 22685
Description: Lemma 2 for gsummatr01 22686. (Contributed by AV, 8-Jan-2019.)
Hypotheses
Ref Expression
gsummatr01.p 𝑃 = (Base‘(SymGrp‘𝑁))
gsummatr01.r 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
gsummatr01.0 0 = (0g𝐺)
gsummatr01.s 𝑆 = (Base‘𝐺)
Assertion
Ref Expression
gsummatr01lem4 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑛   𝐵,𝑖,𝑗,𝑛   𝑖,𝐺,𝑗,𝑛   𝑖,𝐾,𝑗,𝑛   𝐾,𝑟   𝑖,𝐿,𝑗,𝑛   𝐿,𝑟   𝑖,𝑁,𝑗,𝑛   𝑃,𝑟   𝑄,𝑟   𝑄,𝑖,𝑗,𝑛   𝑅,𝑖,𝑗,𝑛   𝑆,𝑖,𝑗,𝑛   0 ,𝑖,𝑗,𝑛
Allowed substitution hints:   𝐴(𝑟)   𝐵(𝑟)   𝑃(𝑖,𝑗,𝑛)   𝑅(𝑟)   𝑆(𝑟)   𝐺(𝑟)   𝑁(𝑟)   0 (𝑟)

Proof of Theorem gsummatr01lem4
StepHypRef Expression
1 eqidd 2741 . . . . . . 7 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))))
2 eqeq1 2744 . . . . . . . . . 10 (𝑖 = 𝑛 → (𝑖 = 𝐾𝑛 = 𝐾))
32adantr 480 . . . . . . . . 9 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑖 = 𝐾𝑛 = 𝐾))
4 eqeq1 2744 . . . . . . . . . . 11 (𝑗 = (𝑄𝑛) → (𝑗 = 𝐿 ↔ (𝑄𝑛) = 𝐿))
54adantl 481 . . . . . . . . . 10 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑗 = 𝐿 ↔ (𝑄𝑛) = 𝐿))
65ifbid 4571 . . . . . . . . 9 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄𝑛) = 𝐿, 0 , 𝐵))
7 oveq12 7457 . . . . . . . . 9 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑖𝐴𝑗) = (𝑛𝐴(𝑄𝑛)))
83, 6, 7ifbieq12d 4576 . . . . . . . 8 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))))
9 eldifsni 4815 . . . . . . . . . . 11 (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛𝐾)
109neneqd 2951 . . . . . . . . . 10 (𝑛 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝑛 = 𝐾)
1110iffalsed 4559 . . . . . . . . 9 (𝑛 ∈ (𝑁 ∖ {𝐾}) → if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))) = (𝑛𝐴(𝑄𝑛)))
1211adantl 481 . . . . . . . 8 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))) = (𝑛𝐴(𝑄𝑛)))
138, 12sylan9eqr 2802 . . . . . . 7 (((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ (𝑖 = 𝑛𝑗 = (𝑄𝑛))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = (𝑛𝐴(𝑄𝑛)))
14 eldifi 4154 . . . . . . . 8 (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛𝑁)
1514adantl 481 . . . . . . 7 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛𝑁)
16 gsummatr01.p . . . . . . . . 9 𝑃 = (Base‘(SymGrp‘𝑁))
17 gsummatr01.r . . . . . . . . 9 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
1816, 17gsummatr01lem1 22682 . . . . . . . 8 ((𝑄𝑅𝑛𝑁) → (𝑄𝑛) ∈ 𝑁)
1914, 18sylan2 592 . . . . . . 7 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ∈ 𝑁)
20 ovexd 7483 . . . . . . 7 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ V)
211, 13, 15, 19, 20ovmpod 7602 . . . . . 6 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
2221ex 412 . . . . 5 (𝑄𝑅 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛))))
23223ad2ant3 1135 . . . 4 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛))))
24233ad2ant3 1135 . . 3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛))))
2524imp 406 . 2 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
26 eqidd 2741 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗)))
277adantl 481 . . 3 (((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ (𝑖 = 𝑛𝑗 = (𝑄𝑛))) → (𝑖𝐴𝑗) = (𝑛𝐴(𝑄𝑛)))
28 eqidd 2741 . . 3 (((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ 𝑖 = 𝑛) → (𝑁 ∖ {𝐿}) = (𝑁 ∖ {𝐿}))
29 simpr 484 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛 ∈ (𝑁 ∖ {𝐾}))
30 fveq1 6919 . . . . . . . . . 10 (𝑟 = 𝑄 → (𝑟𝐾) = (𝑄𝐾))
3130eqeq1d 2742 . . . . . . . . 9 (𝑟 = 𝑄 → ((𝑟𝐾) = 𝐿 ↔ (𝑄𝐾) = 𝐿))
3231, 17elrab2 3711 . . . . . . . 8 (𝑄𝑅 ↔ (𝑄𝑃 ∧ (𝑄𝐾) = 𝐿))
33 simpll 766 . . . . . . . . . . 11 (((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) → 𝑄𝑃)
34 eqid 2740 . . . . . . . . . . . 12 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3534, 16symgfv 19421 . . . . . . . . . . 11 ((𝑄𝑃𝑛𝑁) → (𝑄𝑛) ∈ 𝑁)
3633, 14, 35syl2an 595 . . . . . . . . . 10 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ∈ 𝑁)
3733adantr 480 . . . . . . . . . . . 12 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑄𝑃)
38 simplrr 777 . . . . . . . . . . . 12 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝐾𝑁)
3914adantl 481 . . . . . . . . . . . 12 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛𝑁)
4037, 38, 393jca 1128 . . . . . . . . . . 11 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑃𝐾𝑁𝑛𝑁))
41 simpllr 775 . . . . . . . . . . 11 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝐾) = 𝐿)
429adantl 481 . . . . . . . . . . 11 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛𝐾)
4334, 16symgfvne 19422 . . . . . . . . . . 11 ((𝑄𝑃𝐾𝑁𝑛𝑁) → ((𝑄𝐾) = 𝐿 → (𝑛𝐾 → (𝑄𝑛) ≠ 𝐿)))
4440, 41, 42, 43syl3c 66 . . . . . . . . . 10 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ≠ 𝐿)
4536, 44jca 511 . . . . . . . . 9 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿))
4645exp42 435 . . . . . . . 8 ((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) → (𝐿𝑁 → (𝐾𝑁 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿)))))
4732, 46sylbi 217 . . . . . . 7 (𝑄𝑅 → (𝐿𝑁 → (𝐾𝑁 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿)))))
48473imp31 1112 . . . . . 6 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿)))
49483ad2ant3 1135 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿)))
5049imp 406 . . . 4 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿))
51 eldifsn 4811 . . . 4 ((𝑄𝑛) ∈ (𝑁 ∖ {𝐿}) ↔ ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿))
5250, 51sylibr 234 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ∈ (𝑁 ∖ {𝐿}))
53 ovexd 7483 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ V)
54 nfv 1913 . . . . 5 𝑖(𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin)
55 nfra1 3290 . . . . . 6 𝑖𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆
56 nfcv 2908 . . . . . . 7 𝑖𝑆
5756nfel2 2927 . . . . . 6 𝑖 𝐵𝑆
5855, 57nfan 1898 . . . . 5 𝑖(∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆)
59 nfv 1913 . . . . 5 𝑖(𝐾𝑁𝐿𝑁𝑄𝑅)
6054, 58, 59nf3an 1900 . . . 4 𝑖((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅))
61 nfcv 2908 . . . . 5 𝑖(𝑁 ∖ {𝐾})
6261nfel2 2927 . . . 4 𝑖 𝑛 ∈ (𝑁 ∖ {𝐾})
6360, 62nfan 1898 . . 3 𝑖(((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾}))
64 nfv 1913 . . . . 5 𝑗(𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin)
65 nfra2w 3305 . . . . . 6 𝑗𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆
66 nfcv 2908 . . . . . . 7 𝑗𝑆
6766nfel2 2927 . . . . . 6 𝑗 𝐵𝑆
6865, 67nfan 1898 . . . . 5 𝑗(∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆)
69 nfv 1913 . . . . 5 𝑗(𝐾𝑁𝐿𝑁𝑄𝑅)
7064, 68, 69nf3an 1900 . . . 4 𝑗((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅))
71 nfcv 2908 . . . . 5 𝑗(𝑁 ∖ {𝐾})
7271nfel2 2927 . . . 4 𝑗 𝑛 ∈ (𝑁 ∖ {𝐾})
7370, 72nfan 1898 . . 3 𝑗(((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾}))
74 nfcv 2908 . . 3 𝑗𝑛
75 nfcv 2908 . . 3 𝑖(𝑄𝑛)
76 nfcv 2908 . . 3 𝑖(𝑛𝐴(𝑄𝑛))
77 nfcv 2908 . . 3 𝑗(𝑛𝐴(𝑄𝑛))
7826, 27, 28, 29, 52, 53, 63, 73, 74, 75, 76, 77ovmpodxf 7600 . 2 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
7925, 78eqtr4d 2783 1 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  Vcvv 3488  cdif 3973  ifcif 4548  {csn 4648  cfv 6573  (class class class)co 7448  cmpo 7450  Fincfn 9003  Basecbs 17258  0gc0g 17499  SymGrpcsymg 19410  CMndccmn 19822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-tset 17330  df-efmnd 18904  df-symg 19411
This theorem is referenced by:  gsummatr01  22686
  Copyright terms: Public domain W3C validator