MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummatr01lem4 Structured version   Visualization version   GIF version

Theorem gsummatr01lem4 22573
Description: Lemma 2 for gsummatr01 22574. (Contributed by AV, 8-Jan-2019.)
Hypotheses
Ref Expression
gsummatr01.p 𝑃 = (Base‘(SymGrp‘𝑁))
gsummatr01.r 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
gsummatr01.0 0 = (0g𝐺)
gsummatr01.s 𝑆 = (Base‘𝐺)
Assertion
Ref Expression
gsummatr01lem4 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑛   𝐵,𝑖,𝑗,𝑛   𝑖,𝐺,𝑗,𝑛   𝑖,𝐾,𝑗,𝑛   𝐾,𝑟   𝑖,𝐿,𝑗,𝑛   𝐿,𝑟   𝑖,𝑁,𝑗,𝑛   𝑃,𝑟   𝑄,𝑟   𝑄,𝑖,𝑗,𝑛   𝑅,𝑖,𝑗,𝑛   𝑆,𝑖,𝑗,𝑛   0 ,𝑖,𝑗,𝑛
Allowed substitution hints:   𝐴(𝑟)   𝐵(𝑟)   𝑃(𝑖,𝑗,𝑛)   𝑅(𝑟)   𝑆(𝑟)   𝐺(𝑟)   𝑁(𝑟)   0 (𝑟)

Proof of Theorem gsummatr01lem4
StepHypRef Expression
1 eqidd 2732 . . . . . . 7 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))))
2 eqeq1 2735 . . . . . . . . . 10 (𝑖 = 𝑛 → (𝑖 = 𝐾𝑛 = 𝐾))
32adantr 480 . . . . . . . . 9 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑖 = 𝐾𝑛 = 𝐾))
4 eqeq1 2735 . . . . . . . . . . 11 (𝑗 = (𝑄𝑛) → (𝑗 = 𝐿 ↔ (𝑄𝑛) = 𝐿))
54adantl 481 . . . . . . . . . 10 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑗 = 𝐿 ↔ (𝑄𝑛) = 𝐿))
65ifbid 4496 . . . . . . . . 9 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄𝑛) = 𝐿, 0 , 𝐵))
7 oveq12 7355 . . . . . . . . 9 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑖𝐴𝑗) = (𝑛𝐴(𝑄𝑛)))
83, 6, 7ifbieq12d 4501 . . . . . . . 8 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))))
9 eldifsni 4739 . . . . . . . . . . 11 (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛𝐾)
109neneqd 2933 . . . . . . . . . 10 (𝑛 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝑛 = 𝐾)
1110iffalsed 4483 . . . . . . . . 9 (𝑛 ∈ (𝑁 ∖ {𝐾}) → if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))) = (𝑛𝐴(𝑄𝑛)))
1211adantl 481 . . . . . . . 8 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))) = (𝑛𝐴(𝑄𝑛)))
138, 12sylan9eqr 2788 . . . . . . 7 (((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ (𝑖 = 𝑛𝑗 = (𝑄𝑛))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = (𝑛𝐴(𝑄𝑛)))
14 eldifi 4078 . . . . . . . 8 (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛𝑁)
1514adantl 481 . . . . . . 7 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛𝑁)
16 gsummatr01.p . . . . . . . . 9 𝑃 = (Base‘(SymGrp‘𝑁))
17 gsummatr01.r . . . . . . . . 9 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
1816, 17gsummatr01lem1 22570 . . . . . . . 8 ((𝑄𝑅𝑛𝑁) → (𝑄𝑛) ∈ 𝑁)
1914, 18sylan2 593 . . . . . . 7 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ∈ 𝑁)
20 ovexd 7381 . . . . . . 7 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ V)
211, 13, 15, 19, 20ovmpod 7498 . . . . . 6 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
2221ex 412 . . . . 5 (𝑄𝑅 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛))))
23223ad2ant3 1135 . . . 4 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛))))
24233ad2ant3 1135 . . 3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛))))
2524imp 406 . 2 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
26 eqidd 2732 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗)))
277adantl 481 . . 3 (((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ (𝑖 = 𝑛𝑗 = (𝑄𝑛))) → (𝑖𝐴𝑗) = (𝑛𝐴(𝑄𝑛)))
28 eqidd 2732 . . 3 (((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ 𝑖 = 𝑛) → (𝑁 ∖ {𝐿}) = (𝑁 ∖ {𝐿}))
29 simpr 484 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛 ∈ (𝑁 ∖ {𝐾}))
30 fveq1 6821 . . . . . . . . . 10 (𝑟 = 𝑄 → (𝑟𝐾) = (𝑄𝐾))
3130eqeq1d 2733 . . . . . . . . 9 (𝑟 = 𝑄 → ((𝑟𝐾) = 𝐿 ↔ (𝑄𝐾) = 𝐿))
3231, 17elrab2 3645 . . . . . . . 8 (𝑄𝑅 ↔ (𝑄𝑃 ∧ (𝑄𝐾) = 𝐿))
33 simpll 766 . . . . . . . . . . 11 (((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) → 𝑄𝑃)
34 eqid 2731 . . . . . . . . . . . 12 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3534, 16symgfv 19292 . . . . . . . . . . 11 ((𝑄𝑃𝑛𝑁) → (𝑄𝑛) ∈ 𝑁)
3633, 14, 35syl2an 596 . . . . . . . . . 10 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ∈ 𝑁)
3733adantr 480 . . . . . . . . . . . 12 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑄𝑃)
38 simplrr 777 . . . . . . . . . . . 12 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝐾𝑁)
3914adantl 481 . . . . . . . . . . . 12 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛𝑁)
4037, 38, 393jca 1128 . . . . . . . . . . 11 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑃𝐾𝑁𝑛𝑁))
41 simpllr 775 . . . . . . . . . . 11 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝐾) = 𝐿)
429adantl 481 . . . . . . . . . . 11 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛𝐾)
4334, 16symgfvne 19293 . . . . . . . . . . 11 ((𝑄𝑃𝐾𝑁𝑛𝑁) → ((𝑄𝐾) = 𝐿 → (𝑛𝐾 → (𝑄𝑛) ≠ 𝐿)))
4440, 41, 42, 43syl3c 66 . . . . . . . . . 10 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ≠ 𝐿)
4536, 44jca 511 . . . . . . . . 9 ((((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) ∧ (𝐿𝑁𝐾𝑁)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿))
4645exp42 435 . . . . . . . 8 ((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) → (𝐿𝑁 → (𝐾𝑁 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿)))))
4732, 46sylbi 217 . . . . . . 7 (𝑄𝑅 → (𝐿𝑁 → (𝐾𝑁 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿)))))
48473imp31 1111 . . . . . 6 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿)))
49483ad2ant3 1135 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿)))
5049imp 406 . . . 4 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿))
51 eldifsn 4735 . . . 4 ((𝑄𝑛) ∈ (𝑁 ∖ {𝐿}) ↔ ((𝑄𝑛) ∈ 𝑁 ∧ (𝑄𝑛) ≠ 𝐿))
5250, 51sylibr 234 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ∈ (𝑁 ∖ {𝐿}))
53 ovexd 7381 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ V)
54 nfv 1915 . . . . 5 𝑖(𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin)
55 nfra1 3256 . . . . . 6 𝑖𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆
56 nfcv 2894 . . . . . . 7 𝑖𝑆
5756nfel2 2913 . . . . . 6 𝑖 𝐵𝑆
5855, 57nfan 1900 . . . . 5 𝑖(∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆)
59 nfv 1915 . . . . 5 𝑖(𝐾𝑁𝐿𝑁𝑄𝑅)
6054, 58, 59nf3an 1902 . . . 4 𝑖((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅))
61 nfcv 2894 . . . . 5 𝑖(𝑁 ∖ {𝐾})
6261nfel2 2913 . . . 4 𝑖 𝑛 ∈ (𝑁 ∖ {𝐾})
6360, 62nfan 1900 . . 3 𝑖(((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾}))
64 nfv 1915 . . . . 5 𝑗(𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin)
65 nfra2w 3268 . . . . . 6 𝑗𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆
66 nfcv 2894 . . . . . . 7 𝑗𝑆
6766nfel2 2913 . . . . . 6 𝑗 𝐵𝑆
6865, 67nfan 1900 . . . . 5 𝑗(∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆)
69 nfv 1915 . . . . 5 𝑗(𝐾𝑁𝐿𝑁𝑄𝑅)
7064, 68, 69nf3an 1902 . . . 4 𝑗((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅))
71 nfcv 2894 . . . . 5 𝑗(𝑁 ∖ {𝐾})
7271nfel2 2913 . . . 4 𝑗 𝑛 ∈ (𝑁 ∖ {𝐾})
7370, 72nfan 1900 . . 3 𝑗(((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾}))
74 nfcv 2894 . . 3 𝑗𝑛
75 nfcv 2894 . . 3 𝑖(𝑄𝑛)
76 nfcv 2894 . . 3 𝑖(𝑛𝐴(𝑄𝑛))
77 nfcv 2894 . . 3 𝑗(𝑛𝐴(𝑄𝑛))
7826, 27, 28, 29, 52, 53, 63, 73, 74, 75, 76, 77ovmpodxf 7496 . 2 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
7925, 78eqtr4d 2769 1 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  Vcvv 3436  cdif 3894  ifcif 4472  {csn 4573  cfv 6481  (class class class)co 7346  cmpo 7348  Fincfn 8869  Basecbs 17120  0gc0g 17343  SymGrpcsymg 19281  CMndccmn 19692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-tset 17180  df-efmnd 18777  df-symg 19282
This theorem is referenced by:  gsummatr01  22574
  Copyright terms: Public domain W3C validator