| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsmodexp | Structured version Visualization version GIF version | ||
| Description: If a positive integer divides another integer, this other integer is equal to its positive powers modulo the positive integer. (Formerly part of the proof for fermltl 16761). (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by AV, 19-Mar-2022.) |
| Ref | Expression |
|---|---|
| dvdsmodexp | ⊢ ((𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∥ 𝐴) → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdszrcl 16234 | . . 3 ⊢ (𝑁 ∥ 𝐴 → (𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ)) | |
| 2 | dvdsmod0 16235 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝐴) → (𝐴 mod 𝑁) = 0) | |
| 3 | 2 | 3ad2antl2 1187 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∥ 𝐴) → (𝐴 mod 𝑁) = 0) |
| 4 | 3 | ex 412 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∥ 𝐴 → (𝐴 mod 𝑁) = 0)) |
| 5 | simpl3 1194 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 𝐵 ∈ ℕ) | |
| 6 | 5 | 0expd 14111 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (0↑𝐵) = 0) |
| 7 | 6 | oveq1d 7405 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → ((0↑𝐵) mod 𝑁) = (0 mod 𝑁)) |
| 8 | simpl1 1192 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 𝐴 ∈ ℤ) | |
| 9 | 0zd 12548 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 0 ∈ ℤ) | |
| 10 | nnnn0 12456 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0) | |
| 11 | 10 | 3ad2ant3 1135 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ0) |
| 12 | 11 | adantr 480 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 𝐵 ∈ ℕ0) |
| 13 | nnrp 12970 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
| 14 | 13 | 3ad2ant2 1134 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝑁 ∈ ℝ+) |
| 15 | 14 | adantr 480 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 𝑁 ∈ ℝ+) |
| 16 | simpr 484 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (𝐴 mod 𝑁) = 0) | |
| 17 | 0mod 13871 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℝ+ → (0 mod 𝑁) = 0) | |
| 18 | 15, 17 | syl 17 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (0 mod 𝑁) = 0) |
| 19 | 16, 18 | eqtr4d 2768 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (𝐴 mod 𝑁) = (0 mod 𝑁)) |
| 20 | modexp 14210 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℝ+) ∧ (𝐴 mod 𝑁) = (0 mod 𝑁)) → ((𝐴↑𝐵) mod 𝑁) = ((0↑𝐵) mod 𝑁)) | |
| 21 | 8, 9, 12, 15, 19, 20 | syl221anc 1383 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → ((𝐴↑𝐵) mod 𝑁) = ((0↑𝐵) mod 𝑁)) |
| 22 | 7, 21, 19 | 3eqtr4d 2775 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁)) |
| 23 | 22 | ex 412 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 mod 𝑁) = 0 → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁))) |
| 24 | 4, 23 | syld 47 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∥ 𝐴 → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁))) |
| 25 | 24 | 3exp 1119 | . . . . 5 ⊢ (𝐴 ∈ ℤ → (𝑁 ∈ ℕ → (𝐵 ∈ ℕ → (𝑁 ∥ 𝐴 → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁))))) |
| 26 | 25 | com24 95 | . . . 4 ⊢ (𝐴 ∈ ℤ → (𝑁 ∥ 𝐴 → (𝐵 ∈ ℕ → (𝑁 ∈ ℕ → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁))))) |
| 27 | 26 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑁 ∥ 𝐴 → (𝐵 ∈ ℕ → (𝑁 ∈ ℕ → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁))))) |
| 28 | 1, 27 | mpcom 38 | . 2 ⊢ (𝑁 ∥ 𝐴 → (𝐵 ∈ ℕ → (𝑁 ∈ ℕ → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁)))) |
| 29 | 28 | 3imp31 1111 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∥ 𝐴) → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 0cc0 11075 ℕcn 12193 ℕ0cn0 12449 ℤcz 12536 ℝ+crp 12958 mod cmo 13838 ↑cexp 14033 ∥ cdvds 16229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-dvds 16230 |
| This theorem is referenced by: fermltl 16761 |
| Copyright terms: Public domain | W3C validator |