Proof of Theorem elntg2
Step | Hyp | Ref
| Expression |
1 | | elntg2.1 |
. . 3
⊢ 𝑃 = (Base‘(EEG‘𝑁)) |
2 | | eqid 2738 |
. . 3
⊢
(Itv‘(EEG‘𝑁)) = (Itv‘(EEG‘𝑁)) |
3 | 1, 2 | elntg 26922 |
. 2
⊢ (𝑁 ∈ ℕ →
(LineG‘(EEG‘𝑁))
= (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ (𝑝 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑥 ∈ (𝑝(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑝))})) |
4 | | simpl1 1192 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → 𝑁 ∈ ℕ) |
5 | | simpl2 1193 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → 𝑥 ∈ 𝑃) |
6 | | eldifi 4015 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦 ∈ 𝑃) |
7 | 6 | 3ad2ant3 1136 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑦 ∈ 𝑃) |
8 | 7 | adantr 484 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → 𝑦 ∈ 𝑃) |
9 | | simpr 488 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → 𝑝 ∈ 𝑃) |
10 | 4, 1, 2, 5, 8, 9 | ebtwntg 26920 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (𝑝 Btwn 〈𝑥, 𝑦〉 ↔ 𝑝 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦))) |
11 | | eengbas 26919 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ →
(𝔼‘𝑁) =
(Base‘(EEG‘𝑁))) |
12 | 1, 11 | eqtr4id 2792 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 𝑃 = (𝔼‘𝑁)) |
13 | 12 | 3ad2ant1 1134 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑃 = (𝔼‘𝑁)) |
14 | 13 | eleq2d 2818 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → (𝑝 ∈ 𝑃 ↔ 𝑝 ∈ (𝔼‘𝑁))) |
15 | 14 | biimpa 480 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → 𝑝 ∈ (𝔼‘𝑁)) |
16 | 12 | eleq2d 2818 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (𝑥 ∈ 𝑃 ↔ 𝑥 ∈ (𝔼‘𝑁))) |
17 | 16 | biimpa 480 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃) → 𝑥 ∈ (𝔼‘𝑁)) |
18 | 17 | 3adant3 1133 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑥 ∈ (𝔼‘𝑁)) |
19 | 18 | adantr 484 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → 𝑥 ∈ (𝔼‘𝑁)) |
20 | 12 | eleq2d 2818 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → (𝑦 ∈ 𝑃 ↔ 𝑦 ∈ (𝔼‘𝑁))) |
21 | 20 | biimpcd 252 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑃 → (𝑁 ∈ ℕ → 𝑦 ∈ (𝔼‘𝑁))) |
22 | 21, 6 | syl11 33 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦 ∈ (𝔼‘𝑁))) |
23 | 22 | a1d 25 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (𝑥 ∈ 𝑃 → (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦 ∈ (𝔼‘𝑁)))) |
24 | 23 | 3imp 1112 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑦 ∈ (𝔼‘𝑁)) |
25 | 24 | adantr 484 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → 𝑦 ∈ (𝔼‘𝑁)) |
26 | | brbtwn 26837 |
. . . . . . . 8
⊢ ((𝑝 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝑝 Btwn 〈𝑥, 𝑦〉 ↔ ∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))))) |
27 | 15, 19, 25, 26 | syl3anc 1372 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (𝑝 Btwn 〈𝑥, 𝑦〉 ↔ ∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))))) |
28 | | elntg2.2 |
. . . . . . . . 9
⊢ 𝐼 = (1...𝑁) |
29 | 28 | raleqi 3313 |
. . . . . . . 8
⊢
(∀𝑖 ∈
𝐼 (𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖)))) |
30 | 29 | rexbii 3160 |
. . . . . . 7
⊢
(∃𝑘 ∈
(0[,]1)∀𝑖 ∈
𝐼 (𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ↔ ∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖)))) |
31 | 27, 30 | bitr4di 292 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (𝑝 Btwn 〈𝑥, 𝑦〉 ↔ ∃𝑘 ∈ (0[,]1)∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))))) |
32 | 10, 31 | bitr3d 284 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (𝑝 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ↔ ∃𝑘 ∈ (0[,]1)∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))))) |
33 | 4, 1, 2, 9, 8, 5 | ebtwntg 26920 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (𝑥 Btwn 〈𝑝, 𝑦〉 ↔ 𝑥 ∈ (𝑝(Itv‘(EEG‘𝑁))𝑦))) |
34 | | brbtwn 26837 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝑥 Btwn 〈𝑝, 𝑦〉 ↔ ∃𝑙 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))))) |
35 | 19, 15, 25, 34 | syl3anc 1372 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (𝑥 Btwn 〈𝑝, 𝑦〉 ↔ ∃𝑙 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))))) |
36 | 33, 35 | bitr3d 284 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (𝑥 ∈ (𝑝(Itv‘(EEG‘𝑁))𝑦) ↔ ∃𝑙 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))))) |
37 | | 0xr 10759 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ* |
38 | | 1xr 10771 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ* |
39 | | 0le1 11234 |
. . . . . . . . . 10
⊢ 0 ≤
1 |
40 | | snunico 12946 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1)
→ ((0[,)1) ∪ {1}) = (0[,]1)) |
41 | 37, 38, 39, 40 | mp3an 1462 |
. . . . . . . . 9
⊢ ((0[,)1)
∪ {1}) = (0[,]1) |
42 | 41 | eqcomi 2747 |
. . . . . . . 8
⊢ (0[,]1) =
((0[,)1) ∪ {1}) |
43 | 42 | a1i 11 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (0[,]1) = ((0[,)1) ∪
{1})) |
44 | 43 | rexeqdv 3316 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (∃𝑙 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ↔ ∃𝑙 ∈ ((0[,)1) ∪ {1})∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))))) |
45 | | rexun 4078 |
. . . . . . 7
⊢
(∃𝑙 ∈
((0[,)1) ∪ {1})∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ↔ (∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ {1}∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))))) |
46 | | eldifsn 4672 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (𝑃 ∖ {𝑥}) ↔ (𝑦 ∈ 𝑃 ∧ 𝑦 ≠ 𝑥)) |
47 | | elee 26832 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℕ → (𝑥 ∈ (𝔼‘𝑁) ↔ 𝑥:(1...𝑁)⟶ℝ)) |
48 | | ffn 6498 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥:(1...𝑁)⟶ℝ → 𝑥 Fn (1...𝑁)) |
49 | 47, 48 | syl6bi 256 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → (𝑥 ∈ (𝔼‘𝑁) → 𝑥 Fn (1...𝑁))) |
50 | 16, 49 | sylbid 243 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ ℕ → (𝑥 ∈ 𝑃 → 𝑥 Fn (1...𝑁))) |
51 | 50 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ 𝑃 → (𝑁 ∈ ℕ → (𝑥 ∈ 𝑃 → 𝑥 Fn (1...𝑁)))) |
52 | 51 | 3imp 1112 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ 𝑃 ∧ 𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃) → 𝑥 Fn (1...𝑁)) |
53 | | elee 26832 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℕ → (𝑦 ∈ (𝔼‘𝑁) ↔ 𝑦:(1...𝑁)⟶ℝ)) |
54 | | ffn 6498 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦:(1...𝑁)⟶ℝ → 𝑦 Fn (1...𝑁)) |
55 | 53, 54 | syl6bi 256 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → (𝑦 ∈ (𝔼‘𝑁) → 𝑦 Fn (1...𝑁))) |
56 | 20, 55 | sylbid 243 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ ℕ → (𝑦 ∈ 𝑃 → 𝑦 Fn (1...𝑁))) |
57 | 56 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ 𝑃 → (𝑁 ∈ ℕ → (𝑦 ∈ 𝑃 → 𝑦 Fn (1...𝑁)))) |
58 | 57 | 3imp31 1113 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ 𝑃 ∧ 𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃) → 𝑦 Fn (1...𝑁)) |
59 | | eqfnfv 6803 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 Fn (1...𝑁) ∧ 𝑦 Fn (1...𝑁)) → (𝑥 = 𝑦 ↔ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (𝑦‘𝑖))) |
60 | 52, 58, 59 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ 𝑃 ∧ 𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃) → (𝑥 = 𝑦 ↔ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (𝑦‘𝑖))) |
61 | 60 | biimprd 251 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ 𝑃 ∧ 𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃) → (∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (𝑦‘𝑖) → 𝑥 = 𝑦)) |
62 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) |
63 | 61, 62 | syl6ibr 255 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ 𝑃 ∧ 𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃) → (∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (𝑦‘𝑖) → 𝑦 = 𝑥)) |
64 | 63 | necon3ad 2947 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝑃 ∧ 𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃) → (𝑦 ≠ 𝑥 → ¬ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (𝑦‘𝑖))) |
65 | 64 | 3exp 1120 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝑃 → (𝑁 ∈ ℕ → (𝑥 ∈ 𝑃 → (𝑦 ≠ 𝑥 → ¬ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (𝑦‘𝑖))))) |
66 | 65 | com24 95 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝑃 → (𝑦 ≠ 𝑥 → (𝑥 ∈ 𝑃 → (𝑁 ∈ ℕ → ¬ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (𝑦‘𝑖))))) |
67 | 66 | imp 410 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝑃 ∧ 𝑦 ≠ 𝑥) → (𝑥 ∈ 𝑃 → (𝑁 ∈ ℕ → ¬ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (𝑦‘𝑖)))) |
68 | 46, 67 | sylbi 220 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (𝑃 ∖ {𝑥}) → (𝑥 ∈ 𝑃 → (𝑁 ∈ ℕ → ¬ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (𝑦‘𝑖)))) |
69 | 68 | 3imp31 1113 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → ¬ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (𝑦‘𝑖)) |
70 | 69 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → ¬ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (𝑦‘𝑖)) |
71 | 12 | eleq2d 2818 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ → (𝑝 ∈ 𝑃 ↔ 𝑝 ∈ (𝔼‘𝑁))) |
72 | | elee 26832 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ → (𝑝 ∈ (𝔼‘𝑁) ↔ 𝑝:(1...𝑁)⟶ℝ)) |
73 | 72 | biimpd 232 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ → (𝑝 ∈ (𝔼‘𝑁) → 𝑝:(1...𝑁)⟶ℝ)) |
74 | 71, 73 | sylbid 243 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ → (𝑝 ∈ 𝑃 → 𝑝:(1...𝑁)⟶ℝ)) |
75 | 74 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → (𝑝 ∈ 𝑃 → 𝑝:(1...𝑁)⟶ℝ)) |
76 | 75 | imp 410 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → 𝑝:(1...𝑁)⟶ℝ) |
77 | 76 | ffvelrnda 6855 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝‘𝑖) ∈ ℝ) |
78 | 77 | recnd 10740 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝‘𝑖) ∈ ℂ) |
79 | 78 | mul02d 10909 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (0 · (𝑝‘𝑖)) = 0) |
80 | 21, 53 | mpbidi 244 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ 𝑃 → (𝑁 ∈ ℕ → 𝑦:(1...𝑁)⟶ℝ)) |
81 | 80, 6 | syl11 33 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ → (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦:(1...𝑁)⟶ℝ)) |
82 | 81 | a1d 25 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ → (𝑥 ∈ 𝑃 → (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦:(1...𝑁)⟶ℝ))) |
83 | 82 | 3imp 1112 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑦:(1...𝑁)⟶ℝ) |
84 | 83 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → 𝑦:(1...𝑁)⟶ℝ) |
85 | 84 | ffvelrnda 6855 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦‘𝑖) ∈ ℝ) |
86 | 85 | recnd 10740 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦‘𝑖) ∈ ℂ) |
87 | 86 | mulid2d 10730 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (1 · (𝑦‘𝑖)) = (𝑦‘𝑖)) |
88 | 79, 87 | oveq12d 7182 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑖 ∈ (1...𝑁)) → ((0 · (𝑝‘𝑖)) + (1 · (𝑦‘𝑖))) = (0 + (𝑦‘𝑖))) |
89 | 86 | addid2d 10912 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (0 + (𝑦‘𝑖)) = (𝑦‘𝑖)) |
90 | 88, 89 | eqtrd 2773 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑖 ∈ (1...𝑁)) → ((0 · (𝑝‘𝑖)) + (1 · (𝑦‘𝑖))) = (𝑦‘𝑖)) |
91 | 90 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥‘𝑖) = ((0 · (𝑝‘𝑖)) + (1 · (𝑦‘𝑖))) ↔ (𝑥‘𝑖) = (𝑦‘𝑖))) |
92 | 91 | ralbidva 3108 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = ((0 · (𝑝‘𝑖)) + (1 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (𝑦‘𝑖))) |
93 | 70, 92 | mtbird 328 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → ¬ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = ((0 · (𝑝‘𝑖)) + (1 · (𝑦‘𝑖)))) |
94 | | 1re 10712 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ |
95 | | oveq2 7172 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = 1 → (1 − 𝑙) = (1 −
1)) |
96 | 95 | oveq1d 7179 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = 1 → ((1 − 𝑙) · (𝑝‘𝑖)) = ((1 − 1) · (𝑝‘𝑖))) |
97 | | 1m1e0 11781 |
. . . . . . . . . . . . . . . . 17
⊢ (1
− 1) = 0 |
98 | 97 | oveq1i 7174 |
. . . . . . . . . . . . . . . 16
⊢ ((1
− 1) · (𝑝‘𝑖)) = (0 · (𝑝‘𝑖)) |
99 | 96, 98 | eqtrdi 2789 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = 1 → ((1 − 𝑙) · (𝑝‘𝑖)) = (0 · (𝑝‘𝑖))) |
100 | | oveq1 7171 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = 1 → (𝑙 · (𝑦‘𝑖)) = (1 · (𝑦‘𝑖))) |
101 | 99, 100 | oveq12d 7182 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = 1 → (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) = ((0 · (𝑝‘𝑖)) + (1 · (𝑦‘𝑖)))) |
102 | 101 | eqeq2d 2749 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 1 → ((𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ↔ (𝑥‘𝑖) = ((0 · (𝑝‘𝑖)) + (1 · (𝑦‘𝑖))))) |
103 | 102 | ralbidv 3109 |
. . . . . . . . . . . 12
⊢ (𝑙 = 1 → (∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = ((0 · (𝑝‘𝑖)) + (1 · (𝑦‘𝑖))))) |
104 | 103 | rexsng 4562 |
. . . . . . . . . . 11
⊢ (1 ∈
ℝ → (∃𝑙
∈ {1}∀𝑖 ∈
(1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = ((0 · (𝑝‘𝑖)) + (1 · (𝑦‘𝑖))))) |
105 | 94, 104 | ax-mp 5 |
. . . . . . . . . 10
⊢
(∃𝑙 ∈
{1}∀𝑖 ∈
(1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = ((0 · (𝑝‘𝑖)) + (1 · (𝑦‘𝑖)))) |
106 | 93, 105 | sylnibr 332 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → ¬ ∃𝑙 ∈ {1}∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖)))) |
107 | 28 | raleqi 3313 |
. . . . . . . . . . 11
⊢
(∀𝑖 ∈
𝐼 (𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖)))) |
108 | 107 | rexbii 3160 |
. . . . . . . . . 10
⊢
(∃𝑙 ∈
(0[,)1)∀𝑖 ∈
𝐼 (𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ↔ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖)))) |
109 | | biorf 936 |
. . . . . . . . . 10
⊢ (¬
∃𝑙 ∈
{1}∀𝑖 ∈
(1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) → (∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ↔ (∃𝑙 ∈ {1}∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖)))))) |
110 | 108, 109 | syl5bb 286 |
. . . . . . . . 9
⊢ (¬
∃𝑙 ∈
{1}∀𝑖 ∈
(1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) → (∃𝑙 ∈ (0[,)1)∀𝑖 ∈ 𝐼 (𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ↔ (∃𝑙 ∈ {1}∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖)))))) |
111 | 106, 110 | syl 17 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (∃𝑙 ∈ (0[,)1)∀𝑖 ∈ 𝐼 (𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ↔ (∃𝑙 ∈ {1}∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖)))))) |
112 | | orcom 869 |
. . . . . . . 8
⊢
((∃𝑙 ∈
{1}∀𝑖 ∈
(1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖)))) ↔ (∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ {1}∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))))) |
113 | 111, 112 | bitr2di 291 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → ((∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ {1}∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖)))) ↔ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ 𝐼 (𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))))) |
114 | 45, 113 | syl5bb 286 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (∃𝑙 ∈ ((0[,)1) ∪ {1})∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ↔ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ 𝐼 (𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))))) |
115 | 36, 44, 114 | 3bitrd 308 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (𝑥 ∈ (𝑝(Itv‘(EEG‘𝑁))𝑦) ↔ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ 𝐼 (𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))))) |
116 | 4, 1, 2, 5, 9, 8 | ebtwntg 26920 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (𝑦 Btwn 〈𝑥, 𝑝〉 ↔ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑝))) |
117 | | brbtwn 26837 |
. . . . . . . 8
⊢ ((𝑦 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁)) → (𝑦 Btwn 〈𝑥, 𝑝〉 ↔ ∃𝑚 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))) |
118 | 25, 19, 15, 117 | syl3anc 1372 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (𝑦 Btwn 〈𝑥, 𝑝〉 ↔ ∃𝑚 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))) |
119 | 116, 118 | bitr3d 284 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑝) ↔ ∃𝑚 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))) |
120 | | snunioc 12947 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1)
→ ({0} ∪ (0(,]1)) = (0[,]1)) |
121 | 37, 38, 39, 120 | mp3an 1462 |
. . . . . . . . 9
⊢ ({0}
∪ (0(,]1)) = (0[,]1) |
122 | 121 | eqcomi 2747 |
. . . . . . . 8
⊢ (0[,]1) =
({0} ∪ (0(,]1)) |
123 | 122 | a1i 11 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (0[,]1) = ({0} ∪
(0(,]1))) |
124 | 123 | rexeqdv 3316 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (∃𝑚 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ↔ ∃𝑚 ∈ ({0} ∪ (0(,]1))∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))) |
125 | | rexun 4078 |
. . . . . . 7
⊢
(∃𝑚 ∈
({0} ∪ (0(,]1))∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ↔ (∃𝑚 ∈ {0}∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))) |
126 | | eqcom 2745 |
. . . . . . . . . . . 12
⊢ ((𝑥‘𝑖) = (𝑦‘𝑖) ↔ (𝑦‘𝑖) = (𝑥‘𝑖)) |
127 | 126 | ralbii 3080 |
. . . . . . . . . . 11
⊢
(∀𝑖 ∈
(1...𝑁)(𝑥‘𝑖) = (𝑦‘𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (𝑥‘𝑖)) |
128 | 70, 127 | sylnib 331 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → ¬ ∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (𝑥‘𝑖)) |
129 | 16 | biimpd 232 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ → (𝑥 ∈ 𝑃 → 𝑥 ∈ (𝔼‘𝑁))) |
130 | 129, 47 | sylibd 242 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ → (𝑥 ∈ 𝑃 → 𝑥:(1...𝑁)⟶ℝ)) |
131 | 130 | imp 410 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃) → 𝑥:(1...𝑁)⟶ℝ) |
132 | 131 | 3adant3 1133 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑥:(1...𝑁)⟶ℝ) |
133 | 132 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → 𝑥:(1...𝑁)⟶ℝ) |
134 | 133 | ffvelrnda 6855 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥‘𝑖) ∈ ℝ) |
135 | 134 | recnd 10740 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥‘𝑖) ∈ ℂ) |
136 | 135 | mulid2d 10730 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (1 · (𝑥‘𝑖)) = (𝑥‘𝑖)) |
137 | 136, 79 | oveq12d 7182 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑖 ∈ (1...𝑁)) → ((1 · (𝑥‘𝑖)) + (0 · (𝑝‘𝑖))) = ((𝑥‘𝑖) + 0)) |
138 | 135 | addid1d 10911 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥‘𝑖) + 0) = (𝑥‘𝑖)) |
139 | 137, 138 | eqtrd 2773 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑖 ∈ (1...𝑁)) → ((1 · (𝑥‘𝑖)) + (0 · (𝑝‘𝑖))) = (𝑥‘𝑖)) |
140 | 139 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) = ((1 · (𝑥‘𝑖)) + (0 · (𝑝‘𝑖))) ↔ (𝑦‘𝑖) = (𝑥‘𝑖))) |
141 | 140 | ralbidva 3108 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = ((1 · (𝑥‘𝑖)) + (0 · (𝑝‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (𝑥‘𝑖))) |
142 | 128, 141 | mtbird 328 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → ¬ ∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = ((1 · (𝑥‘𝑖)) + (0 · (𝑝‘𝑖)))) |
143 | | 0re 10714 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
144 | | oveq2 7172 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 0 → (1 − 𝑚) = (1 −
0)) |
145 | 144 | oveq1d 7179 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 0 → ((1 − 𝑚) · (𝑥‘𝑖)) = ((1 − 0) · (𝑥‘𝑖))) |
146 | | 1m0e1 11830 |
. . . . . . . . . . . . . . . 16
⊢ (1
− 0) = 1 |
147 | 146 | oveq1i 7174 |
. . . . . . . . . . . . . . 15
⊢ ((1
− 0) · (𝑥‘𝑖)) = (1 · (𝑥‘𝑖)) |
148 | 145, 147 | eqtrdi 2789 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 0 → ((1 − 𝑚) · (𝑥‘𝑖)) = (1 · (𝑥‘𝑖))) |
149 | | oveq1 7171 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 0 → (𝑚 · (𝑝‘𝑖)) = (0 · (𝑝‘𝑖))) |
150 | 148, 149 | oveq12d 7182 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 0 → (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) = ((1 · (𝑥‘𝑖)) + (0 · (𝑝‘𝑖)))) |
151 | 150 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑚 = 0 → ((𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ↔ (𝑦‘𝑖) = ((1 · (𝑥‘𝑖)) + (0 · (𝑝‘𝑖))))) |
152 | 151 | ralbidv 3109 |
. . . . . . . . . . 11
⊢ (𝑚 = 0 → (∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = ((1 · (𝑥‘𝑖)) + (0 · (𝑝‘𝑖))))) |
153 | 152 | rexsng 4562 |
. . . . . . . . . 10
⊢ (0 ∈
ℝ → (∃𝑚
∈ {0}∀𝑖 ∈
(1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = ((1 · (𝑥‘𝑖)) + (0 · (𝑝‘𝑖))))) |
154 | 143, 153 | ax-mp 5 |
. . . . . . . . 9
⊢
(∃𝑚 ∈
{0}∀𝑖 ∈
(1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = ((1 · (𝑥‘𝑖)) + (0 · (𝑝‘𝑖)))) |
155 | 142, 154 | sylnibr 332 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → ¬ ∃𝑚 ∈ {0}∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))) |
156 | 28 | raleqi 3313 |
. . . . . . . . . 10
⊢
(∀𝑖 ∈
𝐼 (𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))) |
157 | 156 | rexbii 3160 |
. . . . . . . . 9
⊢
(∃𝑚 ∈
(0(,]1)∀𝑖 ∈
𝐼 (𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ↔ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))) |
158 | | biorf 936 |
. . . . . . . . 9
⊢ (¬
∃𝑚 ∈
{0}∀𝑖 ∈
(1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) → (∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ↔ (∃𝑚 ∈ {0}∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))))) |
159 | 157, 158 | syl5bb 286 |
. . . . . . . 8
⊢ (¬
∃𝑚 ∈
{0}∀𝑖 ∈
(1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) → (∃𝑚 ∈ (0(,]1)∀𝑖 ∈ 𝐼 (𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ↔ (∃𝑚 ∈ {0}∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))))) |
160 | 155, 159 | syl 17 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (∃𝑚 ∈ (0(,]1)∀𝑖 ∈ 𝐼 (𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ↔ (∃𝑚 ∈ {0}∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))))) |
161 | 125, 160 | bitr4id 293 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (∃𝑚 ∈ ({0} ∪ (0(,]1))∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ↔ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ 𝐼 (𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))) |
162 | 119, 124,
161 | 3bitrd 308 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑝) ↔ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ 𝐼 (𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))) |
163 | 32, 115, 162 | 3orbi123d 1436 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝 ∈ 𝑃) → ((𝑝 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑥 ∈ (𝑝(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑝)) ↔ (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ 𝐼 (𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ 𝐼 (𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))))) |
164 | 163 | rabbidva 3378 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ (𝑃 ∖ {𝑥})) → {𝑝 ∈ 𝑃 ∣ (𝑝 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑥 ∈ (𝑝(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑝))} = {𝑝 ∈ 𝑃 ∣ (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ 𝐼 (𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ 𝐼 (𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))}) |
165 | 164 | mpoeq3dva 7239 |
. 2
⊢ (𝑁 ∈ ℕ → (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ (𝑝 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑥 ∈ (𝑝(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑝))}) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ 𝐼 (𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ 𝐼 (𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))})) |
166 | 3, 165 | eqtrd 2773 |
1
⊢ (𝑁 ∈ ℕ →
(LineG‘(EEG‘𝑁))
= (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ 𝐼 (𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ 𝐼 (𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))})) |