MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdadjvtx Structured version   Visualization version   GIF version

Theorem pthdadjvtx 29665
Description: The adjacent vertices of a path of length at least 2 are distinct. (Contributed by AV, 5-Feb-2021.)
Assertion
Ref Expression
pthdadjvtx ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 𝐼 ∈ (0..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))

Proof of Theorem pthdadjvtx
StepHypRef Expression
1 elfzo0l 13724 . . 3 (𝐼 ∈ (0..^(♯‘𝐹)) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^(♯‘𝐹))))
2 simpr 484 . . . . . . . . 9 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(Paths‘𝐺)𝑃)
3 pthiswlk 29662 . . . . . . . . . . 11 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
4 wlkcl 29550 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
5 1zzd 12571 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 ∈ ℤ)
6 nn0z 12561 . . . . . . . . . . . . . . 15 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
76adantr 480 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℤ)
8 simpr 484 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 < (♯‘𝐹))
9 fzolb 13633 . . . . . . . . . . . . . 14 (1 ∈ (1..^(♯‘𝐹)) ↔ (1 ∈ ℤ ∧ (♯‘𝐹) ∈ ℤ ∧ 1 < (♯‘𝐹)))
105, 7, 8, 9syl3anbrc 1344 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 ∈ (1..^(♯‘𝐹)))
11 0elfz 13592 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹)))
1211adantr 480 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 0 ∈ (0...(♯‘𝐹)))
13 ax-1ne0 11144 . . . . . . . . . . . . . 14 1 ≠ 0
1413a1i 11 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 ≠ 0)
1510, 12, 143jca 1128 . . . . . . . . . . . 12 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0))
1615ex 412 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → (1 < (♯‘𝐹) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0)))
173, 4, 163syl 18 . . . . . . . . . 10 (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0)))
1817impcom 407 . . . . . . . . 9 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0))
19 pthdivtx 29664 . . . . . . . . 9 ((𝐹(Paths‘𝐺)𝑃 ∧ (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0)) → (𝑃‘1) ≠ (𝑃‘0))
202, 18, 19syl2anc 584 . . . . . . . 8 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃‘1) ≠ (𝑃‘0))
2120necomd 2981 . . . . . . 7 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃‘0) ≠ (𝑃‘1))
22213adant1 1130 . . . . . 6 ((𝐼 = 0 ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃‘0) ≠ (𝑃‘1))
23 fveq2 6861 . . . . . . . 8 (𝐼 = 0 → (𝑃𝐼) = (𝑃‘0))
24 fv0p1e1 12311 . . . . . . . 8 (𝐼 = 0 → (𝑃‘(𝐼 + 1)) = (𝑃‘1))
2523, 24neeq12d 2987 . . . . . . 7 (𝐼 = 0 → ((𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
26253ad2ant1 1133 . . . . . 6 ((𝐼 = 0 ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → ((𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
2722, 26mpbird 257 . . . . 5 ((𝐼 = 0 ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
28273exp 1119 . . . 4 (𝐼 = 0 → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
29 simp3 1138 . . . . . 6 ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(Paths‘𝐺)𝑃)
30 id 22 . . . . . . . 8 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ (1..^(♯‘𝐹)))
31 fzo0ss1 13657 . . . . . . . . . 10 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
3231sseli 3945 . . . . . . . . 9 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ (0..^(♯‘𝐹)))
33 fzofzp1 13732 . . . . . . . . 9 (𝐼 ∈ (0..^(♯‘𝐹)) → (𝐼 + 1) ∈ (0...(♯‘𝐹)))
3432, 33syl 17 . . . . . . . 8 (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼 + 1) ∈ (0...(♯‘𝐹)))
35 elfzoelz 13627 . . . . . . . . . . 11 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ ℤ)
3635zcnd 12646 . . . . . . . . . 10 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ ℂ)
37 1cnd 11176 . . . . . . . . . 10 (𝐼 ∈ (1..^(♯‘𝐹)) → 1 ∈ ℂ)
3813a1i 11 . . . . . . . . . 10 (𝐼 ∈ (1..^(♯‘𝐹)) → 1 ≠ 0)
3936, 37, 383jca 1128 . . . . . . . . 9 (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0))
40 addn0nid 11605 . . . . . . . . . 10 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → (𝐼 + 1) ≠ 𝐼)
4140necomd 2981 . . . . . . . . 9 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → 𝐼 ≠ (𝐼 + 1))
4239, 41syl 17 . . . . . . . 8 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ≠ (𝐼 + 1))
4330, 34, 423jca 1128 . . . . . . 7 (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1)))
44433ad2ant1 1133 . . . . . 6 ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝐼 ∈ (1..^(♯‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1)))
45 pthdivtx 29664 . . . . . 6 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1))) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
4629, 44, 45syl2anc 584 . . . . 5 ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
47463exp 1119 . . . 4 (𝐼 ∈ (1..^(♯‘𝐹)) → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
4828, 47jaoi 857 . . 3 ((𝐼 = 0 ∨ 𝐼 ∈ (1..^(♯‘𝐹))) → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
491, 48syl 17 . 2 (𝐼 ∈ (0..^(♯‘𝐹)) → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
50493imp31 1111 1 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 𝐼 ∈ (0..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  0cn0 12449  cz 12536  ...cfz 13475  ..^cfzo 13622  chash 14302  Walkscwlks 29531  Pathscpths 29647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-wlks 29534  df-trls 29627  df-pths 29651
This theorem is referenced by:  2pthnloop  29668  upgr3v3e3cycl  30116  upgr4cycl4dv4e  30121
  Copyright terms: Public domain W3C validator