MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdadjvtx Structured version   Visualization version   GIF version

Theorem pthdadjvtx 28976
Description: The adjacent vertices of a path of length at least 2 are distinct. (Contributed by AV, 5-Feb-2021.)
Assertion
Ref Expression
pthdadjvtx ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 𝐼 ∈ (0..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))

Proof of Theorem pthdadjvtx
StepHypRef Expression
1 elfzo0l 13718 . . 3 (𝐼 ∈ (0..^(♯‘𝐹)) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^(♯‘𝐹))))
2 simpr 485 . . . . . . . . 9 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(Paths‘𝐺)𝑃)
3 pthiswlk 28973 . . . . . . . . . . 11 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
4 wlkcl 28861 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
5 1zzd 12589 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 ∈ ℤ)
6 nn0z 12579 . . . . . . . . . . . . . . 15 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
76adantr 481 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℤ)
8 simpr 485 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 < (♯‘𝐹))
9 fzolb 13634 . . . . . . . . . . . . . 14 (1 ∈ (1..^(♯‘𝐹)) ↔ (1 ∈ ℤ ∧ (♯‘𝐹) ∈ ℤ ∧ 1 < (♯‘𝐹)))
105, 7, 8, 9syl3anbrc 1343 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 ∈ (1..^(♯‘𝐹)))
11 0elfz 13594 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹)))
1211adantr 481 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 0 ∈ (0...(♯‘𝐹)))
13 ax-1ne0 11175 . . . . . . . . . . . . . 14 1 ≠ 0
1413a1i 11 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 ≠ 0)
1510, 12, 143jca 1128 . . . . . . . . . . . 12 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0))
1615ex 413 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → (1 < (♯‘𝐹) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0)))
173, 4, 163syl 18 . . . . . . . . . 10 (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0)))
1817impcom 408 . . . . . . . . 9 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0))
19 pthdivtx 28975 . . . . . . . . 9 ((𝐹(Paths‘𝐺)𝑃 ∧ (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0)) → (𝑃‘1) ≠ (𝑃‘0))
202, 18, 19syl2anc 584 . . . . . . . 8 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃‘1) ≠ (𝑃‘0))
2120necomd 2996 . . . . . . 7 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃‘0) ≠ (𝑃‘1))
22213adant1 1130 . . . . . 6 ((𝐼 = 0 ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃‘0) ≠ (𝑃‘1))
23 fveq2 6888 . . . . . . . 8 (𝐼 = 0 → (𝑃𝐼) = (𝑃‘0))
24 fv0p1e1 12331 . . . . . . . 8 (𝐼 = 0 → (𝑃‘(𝐼 + 1)) = (𝑃‘1))
2523, 24neeq12d 3002 . . . . . . 7 (𝐼 = 0 → ((𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
26253ad2ant1 1133 . . . . . 6 ((𝐼 = 0 ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → ((𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
2722, 26mpbird 256 . . . . 5 ((𝐼 = 0 ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
28273exp 1119 . . . 4 (𝐼 = 0 → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
29 simp3 1138 . . . . . 6 ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(Paths‘𝐺)𝑃)
30 id 22 . . . . . . . 8 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ (1..^(♯‘𝐹)))
31 fzo0ss1 13658 . . . . . . . . . 10 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
3231sseli 3977 . . . . . . . . 9 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ (0..^(♯‘𝐹)))
33 fzofzp1 13725 . . . . . . . . 9 (𝐼 ∈ (0..^(♯‘𝐹)) → (𝐼 + 1) ∈ (0...(♯‘𝐹)))
3432, 33syl 17 . . . . . . . 8 (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼 + 1) ∈ (0...(♯‘𝐹)))
35 elfzoelz 13628 . . . . . . . . . . 11 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ ℤ)
3635zcnd 12663 . . . . . . . . . 10 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ ℂ)
37 1cnd 11205 . . . . . . . . . 10 (𝐼 ∈ (1..^(♯‘𝐹)) → 1 ∈ ℂ)
3813a1i 11 . . . . . . . . . 10 (𝐼 ∈ (1..^(♯‘𝐹)) → 1 ≠ 0)
3936, 37, 383jca 1128 . . . . . . . . 9 (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0))
40 addn0nid 11630 . . . . . . . . . 10 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → (𝐼 + 1) ≠ 𝐼)
4140necomd 2996 . . . . . . . . 9 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → 𝐼 ≠ (𝐼 + 1))
4239, 41syl 17 . . . . . . . 8 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ≠ (𝐼 + 1))
4330, 34, 423jca 1128 . . . . . . 7 (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1)))
44433ad2ant1 1133 . . . . . 6 ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝐼 ∈ (1..^(♯‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1)))
45 pthdivtx 28975 . . . . . 6 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1))) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
4629, 44, 45syl2anc 584 . . . . 5 ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
47463exp 1119 . . . 4 (𝐼 ∈ (1..^(♯‘𝐹)) → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
4828, 47jaoi 855 . . 3 ((𝐼 = 0 ∨ 𝐼 ∈ (1..^(♯‘𝐹))) → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
491, 48syl 17 . 2 (𝐼 ∈ (0..^(♯‘𝐹)) → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
50493imp31 1112 1 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 𝐼 ∈ (0..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2940   class class class wbr 5147  cfv 6540  (class class class)co 7405  cc 11104  0cc0 11106  1c1 11107   + caddc 11109   < clt 11244  0cn0 12468  cz 12554  ...cfz 13480  ..^cfzo 13623  chash 14286  Walkscwlks 28842  Pathscpths 28958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-wlks 28845  df-trls 28938  df-pths 28962
This theorem is referenced by:  2pthnloop  28977  upgr3v3e3cycl  29422  upgr4cycl4dv4e  29427
  Copyright terms: Public domain W3C validator