Proof of Theorem pthdadjvtx
Step | Hyp | Ref
| Expression |
1 | | elfzo0l 13477 |
. . 3
⊢ (𝐼 ∈
(0..^(♯‘𝐹))
→ (𝐼 = 0 ∨ 𝐼 ∈
(1..^(♯‘𝐹)))) |
2 | | simpr 485 |
. . . . . . . . 9
⊢ ((1 <
(♯‘𝐹) ∧
𝐹(Paths‘𝐺)𝑃) → 𝐹(Paths‘𝐺)𝑃) |
3 | | pthiswlk 28095 |
. . . . . . . . . . 11
⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
4 | | wlkcl 27982 |
. . . . . . . . . . 11
⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈
ℕ0) |
5 | | 1zzd 12351 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 ∈ ℤ) |
6 | | nn0z 12343 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐹)
∈ ℕ0 → (♯‘𝐹) ∈ ℤ) |
7 | 6 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 1 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℤ) |
8 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 < (♯‘𝐹)) |
9 | | fzolb 13393 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
(1..^(♯‘𝐹))
↔ (1 ∈ ℤ ∧ (♯‘𝐹) ∈ ℤ ∧ 1 <
(♯‘𝐹))) |
10 | 5, 7, 8, 9 | syl3anbrc 1342 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 ∈ (1..^(♯‘𝐹))) |
11 | | 0elfz 13353 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝐹)
∈ ℕ0 → 0 ∈ (0...(♯‘𝐹))) |
12 | 11 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 0 ∈ (0...(♯‘𝐹))) |
13 | | ax-1ne0 10940 |
. . . . . . . . . . . . . 14
⊢ 1 ≠
0 |
14 | 13 | a1i 11 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 ≠ 0) |
15 | 10, 12, 14 | 3jca 1127 |
. . . . . . . . . . . 12
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 1 < (♯‘𝐹)) → (1 ∈
(1..^(♯‘𝐹))
∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0)) |
16 | 15 | ex 413 |
. . . . . . . . . . 11
⊢
((♯‘𝐹)
∈ ℕ0 → (1 < (♯‘𝐹) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈
(0...(♯‘𝐹))
∧ 1 ≠ 0))) |
17 | 3, 4, 16 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → (1 ∈
(1..^(♯‘𝐹))
∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0))) |
18 | 17 | impcom 408 |
. . . . . . . . 9
⊢ ((1 <
(♯‘𝐹) ∧
𝐹(Paths‘𝐺)𝑃) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈
(0...(♯‘𝐹))
∧ 1 ≠ 0)) |
19 | | pthdivtx 28097 |
. . . . . . . . 9
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈
(0...(♯‘𝐹))
∧ 1 ≠ 0)) → (𝑃‘1) ≠ (𝑃‘0)) |
20 | 2, 18, 19 | syl2anc 584 |
. . . . . . . 8
⊢ ((1 <
(♯‘𝐹) ∧
𝐹(Paths‘𝐺)𝑃) → (𝑃‘1) ≠ (𝑃‘0)) |
21 | 20 | necomd 2999 |
. . . . . . 7
⊢ ((1 <
(♯‘𝐹) ∧
𝐹(Paths‘𝐺)𝑃) → (𝑃‘0) ≠ (𝑃‘1)) |
22 | 21 | 3adant1 1129 |
. . . . . 6
⊢ ((𝐼 = 0 ∧ 1 <
(♯‘𝐹) ∧
𝐹(Paths‘𝐺)𝑃) → (𝑃‘0) ≠ (𝑃‘1)) |
23 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝐼 = 0 → (𝑃‘𝐼) = (𝑃‘0)) |
24 | | fv0p1e1 12096 |
. . . . . . . 8
⊢ (𝐼 = 0 → (𝑃‘(𝐼 + 1)) = (𝑃‘1)) |
25 | 23, 24 | neeq12d 3005 |
. . . . . . 7
⊢ (𝐼 = 0 → ((𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1))) |
26 | 25 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝐼 = 0 ∧ 1 <
(♯‘𝐹) ∧
𝐹(Paths‘𝐺)𝑃) → ((𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1))) |
27 | 22, 26 | mpbird 256 |
. . . . 5
⊢ ((𝐼 = 0 ∧ 1 <
(♯‘𝐹) ∧
𝐹(Paths‘𝐺)𝑃) → (𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1))) |
28 | 27 | 3exp 1118 |
. . . 4
⊢ (𝐼 = 0 → (1 <
(♯‘𝐹) →
(𝐹(Paths‘𝐺)𝑃 → (𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1))))) |
29 | | simp3 1137 |
. . . . . 6
⊢ ((𝐼 ∈
(1..^(♯‘𝐹))
∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(Paths‘𝐺)𝑃) |
30 | | id 22 |
. . . . . . . 8
⊢ (𝐼 ∈
(1..^(♯‘𝐹))
→ 𝐼 ∈
(1..^(♯‘𝐹))) |
31 | | fzo0ss1 13417 |
. . . . . . . . . 10
⊢
(1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹)) |
32 | 31 | sseli 3917 |
. . . . . . . . 9
⊢ (𝐼 ∈
(1..^(♯‘𝐹))
→ 𝐼 ∈
(0..^(♯‘𝐹))) |
33 | | fzofzp1 13484 |
. . . . . . . . 9
⊢ (𝐼 ∈
(0..^(♯‘𝐹))
→ (𝐼 + 1) ∈
(0...(♯‘𝐹))) |
34 | 32, 33 | syl 17 |
. . . . . . . 8
⊢ (𝐼 ∈
(1..^(♯‘𝐹))
→ (𝐼 + 1) ∈
(0...(♯‘𝐹))) |
35 | | elfzoelz 13387 |
. . . . . . . . . . 11
⊢ (𝐼 ∈
(1..^(♯‘𝐹))
→ 𝐼 ∈
ℤ) |
36 | 35 | zcnd 12427 |
. . . . . . . . . 10
⊢ (𝐼 ∈
(1..^(♯‘𝐹))
→ 𝐼 ∈
ℂ) |
37 | | 1cnd 10970 |
. . . . . . . . . 10
⊢ (𝐼 ∈
(1..^(♯‘𝐹))
→ 1 ∈ ℂ) |
38 | 13 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐼 ∈
(1..^(♯‘𝐹))
→ 1 ≠ 0) |
39 | 36, 37, 38 | 3jca 1127 |
. . . . . . . . 9
⊢ (𝐼 ∈
(1..^(♯‘𝐹))
→ (𝐼 ∈ ℂ
∧ 1 ∈ ℂ ∧ 1 ≠ 0)) |
40 | | addn0nid 11395 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ ℂ ∧ 1 ∈
ℂ ∧ 1 ≠ 0) → (𝐼 + 1) ≠ 𝐼) |
41 | 40 | necomd 2999 |
. . . . . . . . 9
⊢ ((𝐼 ∈ ℂ ∧ 1 ∈
ℂ ∧ 1 ≠ 0) → 𝐼 ≠ (𝐼 + 1)) |
42 | 39, 41 | syl 17 |
. . . . . . . 8
⊢ (𝐼 ∈
(1..^(♯‘𝐹))
→ 𝐼 ≠ (𝐼 + 1)) |
43 | 30, 34, 42 | 3jca 1127 |
. . . . . . 7
⊢ (𝐼 ∈
(1..^(♯‘𝐹))
→ (𝐼 ∈
(1..^(♯‘𝐹))
∧ (𝐼 + 1) ∈
(0...(♯‘𝐹))
∧ 𝐼 ≠ (𝐼 + 1))) |
44 | 43 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝐼 ∈
(1..^(♯‘𝐹))
∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝐼 ∈ (1..^(♯‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1))) |
45 | | pthdivtx 28097 |
. . . . . 6
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1))) → (𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1))) |
46 | 29, 44, 45 | syl2anc 584 |
. . . . 5
⊢ ((𝐼 ∈
(1..^(♯‘𝐹))
∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1))) |
47 | 46 | 3exp 1118 |
. . . 4
⊢ (𝐼 ∈
(1..^(♯‘𝐹))
→ (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1))))) |
48 | 28, 47 | jaoi 854 |
. . 3
⊢ ((𝐼 = 0 ∨ 𝐼 ∈ (1..^(♯‘𝐹))) → (1 <
(♯‘𝐹) →
(𝐹(Paths‘𝐺)𝑃 → (𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1))))) |
49 | 1, 48 | syl 17 |
. 2
⊢ (𝐼 ∈
(0..^(♯‘𝐹))
→ (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1))))) |
50 | 49 | 3imp31 1111 |
1
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 𝐼 ∈ (0..^(♯‘𝐹))) → (𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1))) |