MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdadjvtx Structured version   Visualization version   GIF version

Theorem pthdadjvtx 29707
Description: The adjacent vertices of a path of length at least 2 are distinct. (Contributed by AV, 5-Feb-2021.)
Assertion
Ref Expression
pthdadjvtx ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 𝐼 ∈ (0..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))

Proof of Theorem pthdadjvtx
StepHypRef Expression
1 elfzo0l 13656 . . 3 (𝐼 ∈ (0..^(♯‘𝐹)) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^(♯‘𝐹))))
2 simpr 484 . . . . . . . . 9 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(Paths‘𝐺)𝑃)
3 pthiswlk 29704 . . . . . . . . . . 11 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
4 wlkcl 29595 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
5 1zzd 12503 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 ∈ ℤ)
6 nn0z 12493 . . . . . . . . . . . . . . 15 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
76adantr 480 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℤ)
8 simpr 484 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 < (♯‘𝐹))
9 fzolb 13565 . . . . . . . . . . . . . 14 (1 ∈ (1..^(♯‘𝐹)) ↔ (1 ∈ ℤ ∧ (♯‘𝐹) ∈ ℤ ∧ 1 < (♯‘𝐹)))
105, 7, 8, 9syl3anbrc 1344 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 ∈ (1..^(♯‘𝐹)))
11 0elfz 13524 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹)))
1211adantr 480 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 0 ∈ (0...(♯‘𝐹)))
13 ax-1ne0 11075 . . . . . . . . . . . . . 14 1 ≠ 0
1413a1i 11 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 ≠ 0)
1510, 12, 143jca 1128 . . . . . . . . . . . 12 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0))
1615ex 412 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → (1 < (♯‘𝐹) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0)))
173, 4, 163syl 18 . . . . . . . . . 10 (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0)))
1817impcom 407 . . . . . . . . 9 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0))
19 pthdivtx 29706 . . . . . . . . 9 ((𝐹(Paths‘𝐺)𝑃 ∧ (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0)) → (𝑃‘1) ≠ (𝑃‘0))
202, 18, 19syl2anc 584 . . . . . . . 8 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃‘1) ≠ (𝑃‘0))
2120necomd 2983 . . . . . . 7 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃‘0) ≠ (𝑃‘1))
22213adant1 1130 . . . . . 6 ((𝐼 = 0 ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃‘0) ≠ (𝑃‘1))
23 fveq2 6822 . . . . . . . 8 (𝐼 = 0 → (𝑃𝐼) = (𝑃‘0))
24 fv0p1e1 12243 . . . . . . . 8 (𝐼 = 0 → (𝑃‘(𝐼 + 1)) = (𝑃‘1))
2523, 24neeq12d 2989 . . . . . . 7 (𝐼 = 0 → ((𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
26253ad2ant1 1133 . . . . . 6 ((𝐼 = 0 ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → ((𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
2722, 26mpbird 257 . . . . 5 ((𝐼 = 0 ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
28273exp 1119 . . . 4 (𝐼 = 0 → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
29 simp3 1138 . . . . . 6 ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(Paths‘𝐺)𝑃)
30 id 22 . . . . . . . 8 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ (1..^(♯‘𝐹)))
31 fzo0ss1 13589 . . . . . . . . . 10 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
3231sseli 3930 . . . . . . . . 9 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ (0..^(♯‘𝐹)))
33 fzofzp1 13664 . . . . . . . . 9 (𝐼 ∈ (0..^(♯‘𝐹)) → (𝐼 + 1) ∈ (0...(♯‘𝐹)))
3432, 33syl 17 . . . . . . . 8 (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼 + 1) ∈ (0...(♯‘𝐹)))
35 elfzoelz 13559 . . . . . . . . . . 11 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ ℤ)
3635zcnd 12578 . . . . . . . . . 10 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ ℂ)
37 1cnd 11107 . . . . . . . . . 10 (𝐼 ∈ (1..^(♯‘𝐹)) → 1 ∈ ℂ)
3813a1i 11 . . . . . . . . . 10 (𝐼 ∈ (1..^(♯‘𝐹)) → 1 ≠ 0)
3936, 37, 383jca 1128 . . . . . . . . 9 (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0))
40 addn0nid 11537 . . . . . . . . . 10 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → (𝐼 + 1) ≠ 𝐼)
4140necomd 2983 . . . . . . . . 9 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → 𝐼 ≠ (𝐼 + 1))
4239, 41syl 17 . . . . . . . 8 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ≠ (𝐼 + 1))
4330, 34, 423jca 1128 . . . . . . 7 (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1)))
44433ad2ant1 1133 . . . . . 6 ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝐼 ∈ (1..^(♯‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1)))
45 pthdivtx 29706 . . . . . 6 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1))) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
4629, 44, 45syl2anc 584 . . . . 5 ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
47463exp 1119 . . . 4 (𝐼 ∈ (1..^(♯‘𝐹)) → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
4828, 47jaoi 857 . . 3 ((𝐼 = 0 ∨ 𝐼 ∈ (1..^(♯‘𝐹))) → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
491, 48syl 17 . 2 (𝐼 ∈ (0..^(♯‘𝐹)) → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
50493imp31 1111 1 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 𝐼 ∈ (0..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  0cn0 12381  cz 12468  ...cfz 13407  ..^cfzo 13554  chash 14237  Walkscwlks 29576  Pathscpths 29689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-wlks 29579  df-trls 29670  df-pths 29693
This theorem is referenced by:  2pthnloop  29710  upgr3v3e3cycl  30158  upgr4cycl4dv4e  30163
  Copyright terms: Public domain W3C validator