MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdadjvtx Structured version   Visualization version   GIF version

Theorem pthdadjvtx 27505
Description: The adjacent vertices of a path of length at least 2 are distinct. (Contributed by AV, 5-Feb-2021.)
Assertion
Ref Expression
pthdadjvtx ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 𝐼 ∈ (0..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))

Proof of Theorem pthdadjvtx
StepHypRef Expression
1 elfzo0l 13121 . . 3 (𝐼 ∈ (0..^(♯‘𝐹)) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^(♯‘𝐹))))
2 simpr 487 . . . . . . . . 9 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(Paths‘𝐺)𝑃)
3 pthiswlk 27502 . . . . . . . . . . 11 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
4 wlkcl 27391 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
5 1zzd 12007 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 ∈ ℤ)
6 nn0z 11999 . . . . . . . . . . . . . . 15 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
76adantr 483 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℤ)
8 simpr 487 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 < (♯‘𝐹))
9 fzolb 13038 . . . . . . . . . . . . . 14 (1 ∈ (1..^(♯‘𝐹)) ↔ (1 ∈ ℤ ∧ (♯‘𝐹) ∈ ℤ ∧ 1 < (♯‘𝐹)))
105, 7, 8, 9syl3anbrc 1339 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 ∈ (1..^(♯‘𝐹)))
11 0elfz 12998 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹)))
1211adantr 483 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 0 ∈ (0...(♯‘𝐹)))
13 ax-1ne0 10600 . . . . . . . . . . . . . 14 1 ≠ 0
1413a1i 11 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 ≠ 0)
1510, 12, 143jca 1124 . . . . . . . . . . . 12 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0))
1615ex 415 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → (1 < (♯‘𝐹) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0)))
173, 4, 163syl 18 . . . . . . . . . 10 (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0)))
1817impcom 410 . . . . . . . . 9 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0))
19 pthdivtx 27504 . . . . . . . . 9 ((𝐹(Paths‘𝐺)𝑃 ∧ (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0)) → (𝑃‘1) ≠ (𝑃‘0))
202, 18, 19syl2anc 586 . . . . . . . 8 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃‘1) ≠ (𝑃‘0))
2120necomd 3071 . . . . . . 7 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃‘0) ≠ (𝑃‘1))
22213adant1 1126 . . . . . 6 ((𝐼 = 0 ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃‘0) ≠ (𝑃‘1))
23 fveq2 6664 . . . . . . . 8 (𝐼 = 0 → (𝑃𝐼) = (𝑃‘0))
24 fv0p1e1 11754 . . . . . . . 8 (𝐼 = 0 → (𝑃‘(𝐼 + 1)) = (𝑃‘1))
2523, 24neeq12d 3077 . . . . . . 7 (𝐼 = 0 → ((𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
26253ad2ant1 1129 . . . . . 6 ((𝐼 = 0 ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → ((𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
2722, 26mpbird 259 . . . . 5 ((𝐼 = 0 ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
28273exp 1115 . . . 4 (𝐼 = 0 → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
29 simp3 1134 . . . . . 6 ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(Paths‘𝐺)𝑃)
30 id 22 . . . . . . . 8 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ (1..^(♯‘𝐹)))
31 fzo0ss1 13061 . . . . . . . . . 10 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
3231sseli 3962 . . . . . . . . 9 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ (0..^(♯‘𝐹)))
33 fzofzp1 13128 . . . . . . . . 9 (𝐼 ∈ (0..^(♯‘𝐹)) → (𝐼 + 1) ∈ (0...(♯‘𝐹)))
3432, 33syl 17 . . . . . . . 8 (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼 + 1) ∈ (0...(♯‘𝐹)))
35 elfzoelz 13032 . . . . . . . . . . 11 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ ℤ)
3635zcnd 12082 . . . . . . . . . 10 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ ℂ)
37 1cnd 10630 . . . . . . . . . 10 (𝐼 ∈ (1..^(♯‘𝐹)) → 1 ∈ ℂ)
3813a1i 11 . . . . . . . . . 10 (𝐼 ∈ (1..^(♯‘𝐹)) → 1 ≠ 0)
3936, 37, 383jca 1124 . . . . . . . . 9 (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0))
40 addn0nid 11054 . . . . . . . . . 10 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → (𝐼 + 1) ≠ 𝐼)
4140necomd 3071 . . . . . . . . 9 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → 𝐼 ≠ (𝐼 + 1))
4239, 41syl 17 . . . . . . . 8 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ≠ (𝐼 + 1))
4330, 34, 423jca 1124 . . . . . . 7 (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1)))
44433ad2ant1 1129 . . . . . 6 ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝐼 ∈ (1..^(♯‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1)))
45 pthdivtx 27504 . . . . . 6 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1))) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
4629, 44, 45syl2anc 586 . . . . 5 ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
47463exp 1115 . . . 4 (𝐼 ∈ (1..^(♯‘𝐹)) → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
4828, 47jaoi 853 . . 3 ((𝐼 = 0 ∨ 𝐼 ∈ (1..^(♯‘𝐹))) → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
491, 48syl 17 . 2 (𝐼 ∈ (0..^(♯‘𝐹)) → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
50493imp31 1108 1 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 𝐼 ∈ (0..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wne 3016   class class class wbr 5058  cfv 6349  (class class class)co 7150  cc 10529  0cc0 10531  1c1 10532   + caddc 10534   < clt 10669  0cn0 11891  cz 11975  ...cfz 12886  ..^cfzo 13027  chash 13684  Walkscwlks 27372  Pathscpths 27487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-wlks 27375  df-trls 27468  df-pths 27491
This theorem is referenced by:  2pthnloop  27506  upgr3v3e3cycl  27953  upgr4cycl4dv4e  27958
  Copyright terms: Public domain W3C validator