MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdadjvtx Structured version   Visualization version   GIF version

Theorem pthdadjvtx 29766
Description: The adjacent vertices of a path of length at least 2 are distinct. (Contributed by AV, 5-Feb-2021.)
Assertion
Ref Expression
pthdadjvtx ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 𝐼 ∈ (0..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))

Proof of Theorem pthdadjvtx
StepHypRef Expression
1 elfzo0l 13806 . . 3 (𝐼 ∈ (0..^(♯‘𝐹)) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^(♯‘𝐹))))
2 simpr 484 . . . . . . . . 9 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(Paths‘𝐺)𝑃)
3 pthiswlk 29763 . . . . . . . . . . 11 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
4 wlkcl 29651 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
5 1zzd 12674 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 ∈ ℤ)
6 nn0z 12664 . . . . . . . . . . . . . . 15 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
76adantr 480 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℤ)
8 simpr 484 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 < (♯‘𝐹))
9 fzolb 13722 . . . . . . . . . . . . . 14 (1 ∈ (1..^(♯‘𝐹)) ↔ (1 ∈ ℤ ∧ (♯‘𝐹) ∈ ℤ ∧ 1 < (♯‘𝐹)))
105, 7, 8, 9syl3anbrc 1343 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 ∈ (1..^(♯‘𝐹)))
11 0elfz 13681 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹)))
1211adantr 480 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 0 ∈ (0...(♯‘𝐹)))
13 ax-1ne0 11253 . . . . . . . . . . . . . 14 1 ≠ 0
1413a1i 11 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → 1 ≠ 0)
1510, 12, 143jca 1128 . . . . . . . . . . . 12 (((♯‘𝐹) ∈ ℕ0 ∧ 1 < (♯‘𝐹)) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0))
1615ex 412 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → (1 < (♯‘𝐹) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0)))
173, 4, 163syl 18 . . . . . . . . . 10 (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0)))
1817impcom 407 . . . . . . . . 9 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0))
19 pthdivtx 29765 . . . . . . . . 9 ((𝐹(Paths‘𝐺)𝑃 ∧ (1 ∈ (1..^(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ 1 ≠ 0)) → (𝑃‘1) ≠ (𝑃‘0))
202, 18, 19syl2anc 583 . . . . . . . 8 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃‘1) ≠ (𝑃‘0))
2120necomd 3002 . . . . . . 7 ((1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃‘0) ≠ (𝑃‘1))
22213adant1 1130 . . . . . 6 ((𝐼 = 0 ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃‘0) ≠ (𝑃‘1))
23 fveq2 6920 . . . . . . . 8 (𝐼 = 0 → (𝑃𝐼) = (𝑃‘0))
24 fv0p1e1 12416 . . . . . . . 8 (𝐼 = 0 → (𝑃‘(𝐼 + 1)) = (𝑃‘1))
2523, 24neeq12d 3008 . . . . . . 7 (𝐼 = 0 → ((𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
26253ad2ant1 1133 . . . . . 6 ((𝐼 = 0 ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → ((𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
2722, 26mpbird 257 . . . . 5 ((𝐼 = 0 ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
28273exp 1119 . . . 4 (𝐼 = 0 → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
29 simp3 1138 . . . . . 6 ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(Paths‘𝐺)𝑃)
30 id 22 . . . . . . . 8 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ (1..^(♯‘𝐹)))
31 fzo0ss1 13746 . . . . . . . . . 10 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
3231sseli 4004 . . . . . . . . 9 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ (0..^(♯‘𝐹)))
33 fzofzp1 13814 . . . . . . . . 9 (𝐼 ∈ (0..^(♯‘𝐹)) → (𝐼 + 1) ∈ (0...(♯‘𝐹)))
3432, 33syl 17 . . . . . . . 8 (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼 + 1) ∈ (0...(♯‘𝐹)))
35 elfzoelz 13716 . . . . . . . . . . 11 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ ℤ)
3635zcnd 12748 . . . . . . . . . 10 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ ℂ)
37 1cnd 11285 . . . . . . . . . 10 (𝐼 ∈ (1..^(♯‘𝐹)) → 1 ∈ ℂ)
3813a1i 11 . . . . . . . . . 10 (𝐼 ∈ (1..^(♯‘𝐹)) → 1 ≠ 0)
3936, 37, 383jca 1128 . . . . . . . . 9 (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0))
40 addn0nid 11710 . . . . . . . . . 10 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → (𝐼 + 1) ≠ 𝐼)
4140necomd 3002 . . . . . . . . 9 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → 𝐼 ≠ (𝐼 + 1))
4239, 41syl 17 . . . . . . . 8 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ≠ (𝐼 + 1))
4330, 34, 423jca 1128 . . . . . . 7 (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1)))
44433ad2ant1 1133 . . . . . 6 ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝐼 ∈ (1..^(♯‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1)))
45 pthdivtx 29765 . . . . . 6 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1))) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
4629, 44, 45syl2anc 583 . . . . 5 ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 1 < (♯‘𝐹) ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
47463exp 1119 . . . 4 (𝐼 ∈ (1..^(♯‘𝐹)) → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
4828, 47jaoi 856 . . 3 ((𝐼 = 0 ∨ 𝐼 ∈ (1..^(♯‘𝐹))) → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
491, 48syl 17 . 2 (𝐼 ∈ (0..^(♯‘𝐹)) → (1 < (♯‘𝐹) → (𝐹(Paths‘𝐺)𝑃 → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))))
50493imp31 1112 1 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 𝐼 ∈ (0..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃‘(𝐼 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  0cn0 12553  cz 12639  ...cfz 13567  ..^cfzo 13711  chash 14379  Walkscwlks 29632  Pathscpths 29748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-wlks 29635  df-trls 29728  df-pths 29752
This theorem is referenced by:  2pthnloop  29767  upgr3v3e3cycl  30212  upgr4cycl4dv4e  30217
  Copyright terms: Public domain W3C validator