Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimuhgr Structured version   Visualization version   GIF version

Theorem grimuhgr 47762
Description: If there is a graph isomorphism between a hypergraph and a class with an edge function, the class is also a hypergraph. (Contributed by AV, 2-May-2025.)
Assertion
Ref Expression
grimuhgr ((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇) ∧ Fun (iEdg‘𝑇)) → 𝑇 ∈ UHGraph)

Proof of Theorem grimuhgr
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . . . 7 (Vtx‘𝑆) = (Vtx‘𝑆)
2 eqid 2740 . . . . . . 7 (Vtx‘𝑇) = (Vtx‘𝑇)
3 eqid 2740 . . . . . . 7 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2740 . . . . . . 7 (iEdg‘𝑇) = (iEdg‘𝑇)
51, 2, 3, 4grimprop 47753 . . . . . 6 (𝐹 ∈ (𝑆 GraphIso 𝑇) → (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))))
6 fdmrn 6779 . . . . . . . . . . . . . 14 (Fun (iEdg‘𝑇) ↔ (iEdg‘𝑇):dom (iEdg‘𝑇)⟶ran (iEdg‘𝑇))
76biimpi 216 . . . . . . . . . . . . 13 (Fun (iEdg‘𝑇) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶ran (iEdg‘𝑇))
873ad2ant3 1135 . . . . . . . . . . . 12 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) ∧ Fun (iEdg‘𝑇)) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶ran (iEdg‘𝑇))
98adantr 480 . . . . . . . . . . 11 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) ∧ Fun (iEdg‘𝑇)) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶ran (iEdg‘𝑇))
10 funfn 6608 . . . . . . . . . . . . . 14 (Fun (iEdg‘𝑇) ↔ (iEdg‘𝑇) Fn dom (iEdg‘𝑇))
1110biimpi 216 . . . . . . . . . . . . 13 (Fun (iEdg‘𝑇) → (iEdg‘𝑇) Fn dom (iEdg‘𝑇))
12113ad2ant3 1135 . . . . . . . . . . . 12 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) ∧ Fun (iEdg‘𝑇)) → (iEdg‘𝑇) Fn dom (iEdg‘𝑇))
13 f1ofo 6869 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → 𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇))
14133ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → 𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇))
15143ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → 𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇))
16 foelcdmi 6983 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → ∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗𝑦) = 𝑥)
1715, 16sylan 579 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → ∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗𝑦) = 𝑥)
1817ex 412 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → (𝑥 ∈ dom (iEdg‘𝑇) → ∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗𝑦) = 𝑥))
19 2fveq3 6925 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 = 𝑦 → ((iEdg‘𝑇)‘(𝑗𝑖)) = ((iEdg‘𝑇)‘(𝑗𝑦)))
20 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑖 = 𝑦 → ((iEdg‘𝑆)‘𝑖) = ((iEdg‘𝑆)‘𝑦))
2120imaeq2d 6089 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 = 𝑦 → (𝐹 “ ((iEdg‘𝑆)‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦)))
2219, 21eqeq12d 2756 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 = 𝑦 → (((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) ↔ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
2322rspcv 3631 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ dom (iEdg‘𝑆) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
2423adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
25 f1ofun 6864 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → Fun 𝐹)
26253ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → Fun 𝐹)
2726adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) → Fun 𝐹)
28 fvex 6933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((iEdg‘𝑆)‘𝑦) ∈ V
2928a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑦) ∈ V)
30 funimaexg 6664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((Fun 𝐹 ∧ ((iEdg‘𝑆)‘𝑦) ∈ V) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ∈ V)
3127, 29, 30syl2an2r 684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ∈ V)
32 f1of 6862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → 𝐹:(Vtx‘𝑆)⟶(Vtx‘𝑇))
3332fimassd 6768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ⊆ (Vtx‘𝑇))
34333ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ⊆ (Vtx‘𝑇))
3534adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ⊆ (Vtx‘𝑇))
3635adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ⊆ (Vtx‘𝑇))
3731, 36elpwd 4628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ∈ 𝒫 (Vtx‘𝑇))
38 f1odm 6866 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → dom 𝐹 = (Vtx‘𝑆))
3938adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → dom 𝐹 = (Vtx‘𝑆))
4039adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → dom 𝐹 = (Vtx‘𝑆))
4140ineq1d 4240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (dom 𝐹 ∩ ((iEdg‘𝑆)‘𝑦)) = ((Vtx‘𝑆) ∩ ((iEdg‘𝑆)‘𝑦)))
42 ffvelcdm 7115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑦) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}))
4342ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (𝑦 ∈ dom (iEdg‘𝑆) → ((iEdg‘𝑆)‘𝑦) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅})))
4443adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (𝑦 ∈ dom (iEdg‘𝑆) → ((iEdg‘𝑆)‘𝑦) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅})))
45 eldifsn 4811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((iEdg‘𝑆)‘𝑦) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ↔ (((iEdg‘𝑆)‘𝑦) ∈ 𝒫 (Vtx‘𝑆) ∧ ((iEdg‘𝑆)‘𝑦) ≠ ∅))
4628elpw 4626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((iEdg‘𝑆)‘𝑦) ∈ 𝒫 (Vtx‘𝑆) ↔ ((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆))
4745, 46bianbi 626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((iEdg‘𝑆)‘𝑦) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ↔ (((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆) ∧ ((iEdg‘𝑆)‘𝑦) ≠ ∅))
48 sseqin2 4244 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆) ↔ ((Vtx‘𝑆) ∩ ((iEdg‘𝑆)‘𝑦)) = ((iEdg‘𝑆)‘𝑦))
4948biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆) → ((Vtx‘𝑆) ∩ ((iEdg‘𝑆)‘𝑦)) = ((iEdg‘𝑆)‘𝑦))
5049adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆) ∧ ((iEdg‘𝑆)‘𝑦) ≠ ∅) → ((Vtx‘𝑆) ∩ ((iEdg‘𝑆)‘𝑦)) = ((iEdg‘𝑆)‘𝑦))
51 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆) ∧ ((iEdg‘𝑆)‘𝑦) ≠ ∅) → ((iEdg‘𝑆)‘𝑦) ≠ ∅)
5250, 51eqnetrd 3014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆) ∧ ((iEdg‘𝑆)‘𝑦) ≠ ∅) → ((Vtx‘𝑆) ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅)
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → ((((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆) ∧ ((iEdg‘𝑆)‘𝑦) ≠ ∅) → ((Vtx‘𝑆) ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅))
5447, 53biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (((iEdg‘𝑆)‘𝑦) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) → ((Vtx‘𝑆) ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅))
5544, 54syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (𝑦 ∈ dom (iEdg‘𝑆) → ((Vtx‘𝑆) ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅))
5655imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((Vtx‘𝑆) ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅)
5741, 56eqnetrd 3014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (dom 𝐹 ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅)
5857ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (𝑦 ∈ dom (iEdg‘𝑆) → (dom 𝐹 ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅))
59583adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (𝑦 ∈ dom (iEdg‘𝑆) → (dom 𝐹 ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅))
6059adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) → (𝑦 ∈ dom (iEdg‘𝑆) → (dom 𝐹 ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅))
6160imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (dom 𝐹 ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅)
6261imadisjlnd 6110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ≠ ∅)
63 eldifsn 4811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐹 “ ((iEdg‘𝑆)‘𝑦)) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}) ↔ ((𝐹 “ ((iEdg‘𝑆)‘𝑦)) ∈ 𝒫 (Vtx‘𝑇) ∧ (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ≠ ∅))
6437, 62, 63sylanbrc 582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))
6564adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))
66 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦)) → (((iEdg‘𝑇)‘(𝑗𝑦)) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}) ↔ (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))
6766adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) → (((iEdg‘𝑇)‘(𝑗𝑦)) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}) ↔ (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))
6865, 67mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) → ((iEdg‘𝑇)‘(𝑗𝑦)) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))
69 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘(𝑗𝑦)) = ((iEdg‘𝑇)‘𝑥))
7069eleq1d 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗𝑦) = 𝑥 → (((iEdg‘𝑇)‘(𝑗𝑦)) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}) ↔ ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))
7168, 70syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))
7271ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦)) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))))
7324, 72syld 47 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))))
7473ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) → (𝑦 ∈ dom (iEdg‘𝑆) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))))
7574com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → (𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))))
7675ex 412 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (Fun (iEdg‘𝑇) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → (𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))))))
77763imp 1111 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → (𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))))
7877rexlimdv 3159 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → (∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))
7918, 78syld 47 . . . . . . . . . . . . . . . . . . 19 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → (𝑥 ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))
8079ralrimiv 3151 . . . . . . . . . . . . . . . . . 18 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))
81803exp 1119 . . . . . . . . . . . . . . . . 17 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (Fun (iEdg‘𝑇) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))))
82813exp 1119 . . . . . . . . . . . . . . . 16 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (Fun (iEdg‘𝑇) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))))))
8382com35 98 . . . . . . . . . . . . . . 15 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → (Fun (iEdg‘𝑇) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))))))
8483impd 410 . . . . . . . . . . . . . 14 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → ((𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → (Fun (iEdg‘𝑇) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))))
85843imp 1111 . . . . . . . . . . . . 13 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) ∧ Fun (iEdg‘𝑇)) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))
8685imp 406 . . . . . . . . . . . 12 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) ∧ Fun (iEdg‘𝑇)) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))
87 fnfvrnss 7155 . . . . . . . . . . . 12 (((iEdg‘𝑇) Fn dom (iEdg‘𝑇) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})) → ran (iEdg‘𝑇) ⊆ (𝒫 (Vtx‘𝑇) ∖ {∅}))
8812, 86, 87syl2an2r 684 . . . . . . . . . . 11 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) ∧ Fun (iEdg‘𝑇)) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → ran (iEdg‘𝑇) ⊆ (𝒫 (Vtx‘𝑇) ∖ {∅}))
899, 88fssd 6764 . . . . . . . . . 10 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) ∧ Fun (iEdg‘𝑇)) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅}))
9089ex 412 . . . . . . . . 9 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) ∧ Fun (iEdg‘𝑇)) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅})))
91903exp 1119 . . . . . . . 8 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → ((𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → (Fun (iEdg‘𝑇) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅})))))
9291exlimdv 1932 . . . . . . 7 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → (∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → (Fun (iEdg‘𝑇) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅})))))
9392imp 406 . . . . . 6 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → (Fun (iEdg‘𝑇) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅}))))
945, 93syl 17 . . . . 5 (𝐹 ∈ (𝑆 GraphIso 𝑇) → (Fun (iEdg‘𝑇) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅}))))
9594impcom 407 . . . 4 ((Fun (iEdg‘𝑇) ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅})))
96 grimdmrel 47750 . . . . . . 7 Rel dom GraphIso
9796ovrcl 7489 . . . . . 6 (𝐹 ∈ (𝑆 GraphIso 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
981, 3isuhgr 29095 . . . . . . . 8 (𝑆 ∈ V → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})))
9998adantr 480 . . . . . . 7 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})))
1002, 4isuhgr 29095 . . . . . . . 8 (𝑇 ∈ V → (𝑇 ∈ UHGraph ↔ (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅})))
101100adantl 481 . . . . . . 7 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑇 ∈ UHGraph ↔ (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅})))
10299, 101imbi12d 344 . . . . . 6 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → ((𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph) ↔ ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅}))))
10397, 102syl 17 . . . . 5 (𝐹 ∈ (𝑆 GraphIso 𝑇) → ((𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph) ↔ ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅}))))
104103adantl 481 . . . 4 ((Fun (iEdg‘𝑇) ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) → ((𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph) ↔ ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅}))))
10595, 104mpbird 257 . . 3 ((Fun (iEdg‘𝑇) ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) → (𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph))
106105ex 412 . 2 (Fun (iEdg‘𝑇) → (𝐹 ∈ (𝑆 GraphIso 𝑇) → (𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph)))
1071063imp31 1112 1 ((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇) ∧ Fun (iEdg‘𝑇)) → 𝑇 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648  dom cdm 5700  ran crn 5701  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  iEdgciedg 29032  UHGraphcuhgr 29091   GraphIso cgrim 47745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-uhgr 29093  df-grim 47748
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator