Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimuhgr Structured version   Visualization version   GIF version

Theorem grimuhgr 47362
Description: If there is a graph isomorphism between a hypergraph and a class with an edge function, the class is also a hypergraph. (Contributed by AV, 2-May-2025.)
Assertion
Ref Expression
grimuhgr ((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇) ∧ Fun (iEdg‘𝑇)) → 𝑇 ∈ UHGraph)

Proof of Theorem grimuhgr
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . . . . 7 (Vtx‘𝑆) = (Vtx‘𝑆)
2 eqid 2725 . . . . . . 7 (Vtx‘𝑇) = (Vtx‘𝑇)
3 eqid 2725 . . . . . . 7 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2725 . . . . . . 7 (iEdg‘𝑇) = (iEdg‘𝑇)
51, 2, 3, 4grimprop 47353 . . . . . 6 (𝐹 ∈ (𝑆 GraphIso 𝑇) → (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))))
6 fdmrn 6755 . . . . . . . . . . . . . 14 (Fun (iEdg‘𝑇) ↔ (iEdg‘𝑇):dom (iEdg‘𝑇)⟶ran (iEdg‘𝑇))
76biimpi 215 . . . . . . . . . . . . 13 (Fun (iEdg‘𝑇) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶ran (iEdg‘𝑇))
873ad2ant3 1132 . . . . . . . . . . . 12 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) ∧ Fun (iEdg‘𝑇)) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶ran (iEdg‘𝑇))
98adantr 479 . . . . . . . . . . 11 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) ∧ Fun (iEdg‘𝑇)) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶ran (iEdg‘𝑇))
10 funfn 6584 . . . . . . . . . . . . . 14 (Fun (iEdg‘𝑇) ↔ (iEdg‘𝑇) Fn dom (iEdg‘𝑇))
1110biimpi 215 . . . . . . . . . . . . 13 (Fun (iEdg‘𝑇) → (iEdg‘𝑇) Fn dom (iEdg‘𝑇))
12113ad2ant3 1132 . . . . . . . . . . . 12 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) ∧ Fun (iEdg‘𝑇)) → (iEdg‘𝑇) Fn dom (iEdg‘𝑇))
13 f1ofo 6845 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → 𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇))
14133ad2ant2 1131 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → 𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇))
15143ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → 𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇))
16 foelcdmi 6959 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗:dom (iEdg‘𝑆)–onto→dom (iEdg‘𝑇) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → ∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗𝑦) = 𝑥)
1715, 16sylan 578 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) ∧ 𝑥 ∈ dom (iEdg‘𝑇)) → ∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗𝑦) = 𝑥)
1817ex 411 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → (𝑥 ∈ dom (iEdg‘𝑇) → ∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗𝑦) = 𝑥))
19 2fveq3 6901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 = 𝑦 → ((iEdg‘𝑇)‘(𝑗𝑖)) = ((iEdg‘𝑇)‘(𝑗𝑦)))
20 fveq2 6896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑖 = 𝑦 → ((iEdg‘𝑆)‘𝑖) = ((iEdg‘𝑆)‘𝑦))
2120imaeq2d 6064 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 = 𝑦 → (𝐹 “ ((iEdg‘𝑆)‘𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦)))
2219, 21eqeq12d 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 = 𝑦 → (((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) ↔ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
2322rspcv 3602 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ dom (iEdg‘𝑆) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
2423adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))))
25 f1ofun 6840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → Fun 𝐹)
26253ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → Fun 𝐹)
2726adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) → Fun 𝐹)
28 fvex 6909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((iEdg‘𝑆)‘𝑦) ∈ V
2928a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑦) ∈ V)
30 funimaexg 6640 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((Fun 𝐹 ∧ ((iEdg‘𝑆)‘𝑦) ∈ V) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ∈ V)
3127, 29, 30syl2an2r 683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ∈ V)
32 f1of 6838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → 𝐹:(Vtx‘𝑆)⟶(Vtx‘𝑇))
3332fimassd 6744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ⊆ (Vtx‘𝑇))
34333ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ⊆ (Vtx‘𝑇))
3534adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ⊆ (Vtx‘𝑇))
3635adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ⊆ (Vtx‘𝑇))
3731, 36elpwd 4610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ∈ 𝒫 (Vtx‘𝑇))
38 f1odm 6842 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → dom 𝐹 = (Vtx‘𝑆))
3938adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → dom 𝐹 = (Vtx‘𝑆))
4039adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → dom 𝐹 = (Vtx‘𝑆))
4140ineq1d 4209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (dom 𝐹 ∩ ((iEdg‘𝑆)‘𝑦)) = ((Vtx‘𝑆) ∩ ((iEdg‘𝑆)‘𝑦)))
42 ffvelcdm 7090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑦) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}))
4342ex 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (𝑦 ∈ dom (iEdg‘𝑆) → ((iEdg‘𝑆)‘𝑦) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅})))
4443adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (𝑦 ∈ dom (iEdg‘𝑆) → ((iEdg‘𝑆)‘𝑦) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅})))
45 eldifsn 4792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((iEdg‘𝑆)‘𝑦) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ↔ (((iEdg‘𝑆)‘𝑦) ∈ 𝒫 (Vtx‘𝑆) ∧ ((iEdg‘𝑆)‘𝑦) ≠ ∅))
4628elpw 4608 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((iEdg‘𝑆)‘𝑦) ∈ 𝒫 (Vtx‘𝑆) ↔ ((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆))
4745, 46bianbi 625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((iEdg‘𝑆)‘𝑦) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ↔ (((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆) ∧ ((iEdg‘𝑆)‘𝑦) ≠ ∅))
48 sseqin2 4213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆) ↔ ((Vtx‘𝑆) ∩ ((iEdg‘𝑆)‘𝑦)) = ((iEdg‘𝑆)‘𝑦))
4948biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆) → ((Vtx‘𝑆) ∩ ((iEdg‘𝑆)‘𝑦)) = ((iEdg‘𝑆)‘𝑦))
5049adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆) ∧ ((iEdg‘𝑆)‘𝑦) ≠ ∅) → ((Vtx‘𝑆) ∩ ((iEdg‘𝑆)‘𝑦)) = ((iEdg‘𝑆)‘𝑦))
51 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆) ∧ ((iEdg‘𝑆)‘𝑦) ≠ ∅) → ((iEdg‘𝑆)‘𝑦) ≠ ∅)
5250, 51eqnetrd 2997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆) ∧ ((iEdg‘𝑆)‘𝑦) ≠ ∅) → ((Vtx‘𝑆) ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅)
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → ((((iEdg‘𝑆)‘𝑦) ⊆ (Vtx‘𝑆) ∧ ((iEdg‘𝑆)‘𝑦) ≠ ∅) → ((Vtx‘𝑆) ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅))
5447, 53biimtrid 241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (((iEdg‘𝑆)‘𝑦) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) → ((Vtx‘𝑆) ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅))
5544, 54syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (𝑦 ∈ dom (iEdg‘𝑆) → ((Vtx‘𝑆) ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅))
5655imp 405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → ((Vtx‘𝑆) ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅)
5741, 56eqnetrd 2997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (dom 𝐹 ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅)
5857ex 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (𝑦 ∈ dom (iEdg‘𝑆) → (dom 𝐹 ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅))
59583adant2 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (𝑦 ∈ dom (iEdg‘𝑆) → (dom 𝐹 ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅))
6059adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) → (𝑦 ∈ dom (iEdg‘𝑆) → (dom 𝐹 ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅))
6160imp 405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (dom 𝐹 ∩ ((iEdg‘𝑆)‘𝑦)) ≠ ∅)
6261imadisjlnd 6085 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ≠ ∅)
63 eldifsn 4792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐹 “ ((iEdg‘𝑆)‘𝑦)) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}) ↔ ((𝐹 “ ((iEdg‘𝑆)‘𝑦)) ∈ 𝒫 (Vtx‘𝑇) ∧ (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ≠ ∅))
6437, 62, 63sylanbrc 581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))
6564adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) → (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))
66 eleq1 2813 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦)) → (((iEdg‘𝑇)‘(𝑗𝑦)) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}) ↔ (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))
6766adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) → (((iEdg‘𝑇)‘(𝑗𝑦)) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}) ↔ (𝐹 “ ((iEdg‘𝑆)‘𝑦)) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))
6865, 67mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) → ((iEdg‘𝑇)‘(𝑗𝑦)) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))
69 fveq2 6896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘(𝑗𝑦)) = ((iEdg‘𝑇)‘𝑥))
7069eleq1d 2810 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗𝑦) = 𝑥 → (((iEdg‘𝑇)‘(𝑗𝑦)) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}) ↔ ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))
7168, 70syl5ibcom 244 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) ∧ ((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦))) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))
7271ex 411 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (((iEdg‘𝑇)‘(𝑗𝑦)) = (𝐹 “ ((iEdg‘𝑆)‘𝑦)) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))))
7324, 72syld 47 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) ∧ 𝑦 ∈ dom (iEdg‘𝑆)) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))))
7473ex 411 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) → (𝑦 ∈ dom (iEdg‘𝑆) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))))
7574com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇)) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → (𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))))
7675ex 411 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (Fun (iEdg‘𝑇) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → (𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))))))
77763imp 1108 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → (𝑦 ∈ dom (iEdg‘𝑆) → ((𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))))
7877rexlimdv 3142 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → (∃𝑦 ∈ dom (iEdg‘𝑆)(𝑗𝑦) = 𝑥 → ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))
7918, 78syld 47 . . . . . . . . . . . . . . . . . . 19 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → (𝑥 ∈ dom (iEdg‘𝑇) → ((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))
8079ralrimiv 3134 . . . . . . . . . . . . . . . . . 18 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) ∧ Fun (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))
81803exp 1116 . . . . . . . . . . . . . . . . 17 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (Fun (iEdg‘𝑇) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))))
82813exp 1116 . . . . . . . . . . . . . . . 16 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (Fun (iEdg‘𝑇) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))))))
8382com35 98 . . . . . . . . . . . . . . 15 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) → (∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)) → (Fun (iEdg‘𝑇) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))))))
8483impd 409 . . . . . . . . . . . . . 14 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → ((𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → (Fun (iEdg‘𝑇) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))))
85843imp 1108 . . . . . . . . . . . . 13 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) ∧ Fun (iEdg‘𝑇)) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})))
8685imp 405 . . . . . . . . . . . 12 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) ∧ Fun (iEdg‘𝑇)) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅}))
87 fnfvrnss 7130 . . . . . . . . . . . 12 (((iEdg‘𝑇) Fn dom (iEdg‘𝑇) ∧ ∀𝑥 ∈ dom (iEdg‘𝑇)((iEdg‘𝑇)‘𝑥) ∈ (𝒫 (Vtx‘𝑇) ∖ {∅})) → ran (iEdg‘𝑇) ⊆ (𝒫 (Vtx‘𝑇) ∖ {∅}))
8812, 86, 87syl2an2r 683 . . . . . . . . . . 11 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) ∧ Fun (iEdg‘𝑇)) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → ran (iEdg‘𝑇) ⊆ (𝒫 (Vtx‘𝑇) ∖ {∅}))
899, 88fssd 6740 . . . . . . . . . 10 (((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) ∧ Fun (iEdg‘𝑇)) ∧ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅}))
9089ex 411 . . . . . . . . 9 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ (𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) ∧ Fun (iEdg‘𝑇)) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅})))
91903exp 1116 . . . . . . . 8 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → ((𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → (Fun (iEdg‘𝑇) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅})))))
9291exlimdv 1928 . . . . . . 7 (𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) → (∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖))) → (Fun (iEdg‘𝑇) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅})))))
9392imp 405 . . . . . 6 ((𝐹:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∃𝑗(𝑗:dom (iEdg‘𝑆)–1-1-onto→dom (iEdg‘𝑇) ∧ ∀𝑖 ∈ dom (iEdg‘𝑆)((iEdg‘𝑇)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝑆)‘𝑖)))) → (Fun (iEdg‘𝑇) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅}))))
945, 93syl 17 . . . . 5 (𝐹 ∈ (𝑆 GraphIso 𝑇) → (Fun (iEdg‘𝑇) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅}))))
9594impcom 406 . . . 4 ((Fun (iEdg‘𝑇) ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) → ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅})))
96 grimdmrel 47350 . . . . . . 7 Rel dom GraphIso
9796ovrcl 7460 . . . . . 6 (𝐹 ∈ (𝑆 GraphIso 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
981, 3isuhgr 28945 . . . . . . . 8 (𝑆 ∈ V → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})))
9998adantr 479 . . . . . . 7 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅})))
1002, 4isuhgr 28945 . . . . . . . 8 (𝑇 ∈ V → (𝑇 ∈ UHGraph ↔ (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅})))
101100adantl 480 . . . . . . 7 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑇 ∈ UHGraph ↔ (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅})))
10299, 101imbi12d 343 . . . . . 6 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → ((𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph) ↔ ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅}))))
10397, 102syl 17 . . . . 5 (𝐹 ∈ (𝑆 GraphIso 𝑇) → ((𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph) ↔ ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅}))))
104103adantl 480 . . . 4 ((Fun (iEdg‘𝑇) ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) → ((𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph) ↔ ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶(𝒫 (Vtx‘𝑆) ∖ {∅}) → (iEdg‘𝑇):dom (iEdg‘𝑇)⟶(𝒫 (Vtx‘𝑇) ∖ {∅}))))
10595, 104mpbird 256 . . 3 ((Fun (iEdg‘𝑇) ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇)) → (𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph))
106105ex 411 . 2 (Fun (iEdg‘𝑇) → (𝐹 ∈ (𝑆 GraphIso 𝑇) → (𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph)))
1071063imp31 1109 1 ((𝑆 ∈ UHGraph ∧ 𝐹 ∈ (𝑆 GraphIso 𝑇) ∧ Fun (iEdg‘𝑇)) → 𝑇 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wex 1773  wcel 2098  wne 2929  wral 3050  wrex 3059  Vcvv 3461  cdif 3941  cin 3943  wss 3944  c0 4322  𝒫 cpw 4604  {csn 4630  dom cdm 5678  ran crn 5679  cima 5681  Fun wfun 6543   Fn wfn 6544  wf 6545  ontowfo 6547  1-1-ontowf1o 6548  cfv 6549  (class class class)co 7419  Vtxcvtx 28881  iEdgciedg 28882  UHGraphcuhgr 28941   GraphIso cgrim 47345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-map 8847  df-uhgr 28943  df-grim 47348
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator