Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem4 Structured version   Visualization version   GIF version

Theorem prproropf1olem4 47493
Description: Lemma 4 for prproropf1o 47494. (Contributed by AV, 14-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
prproropf1o.f 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
Assertion
Ref Expression
prproropf1olem4 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → ((𝐹𝑍) = (𝐹𝑊) → 𝑍 = 𝑊))
Distinct variable groups:   𝑉,𝑝   𝑊,𝑝   𝑂,𝑝   𝑃,𝑝   𝑅,𝑝   𝑍,𝑝
Allowed substitution hint:   𝐹(𝑝)

Proof of Theorem prproropf1olem4
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prproropf1o.f . . . 4 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
2 infeq1 9516 . . . . 5 (𝑝 = 𝑍 → inf(𝑝, 𝑉, 𝑅) = inf(𝑍, 𝑉, 𝑅))
3 supeq1 9485 . . . . 5 (𝑝 = 𝑍 → sup(𝑝, 𝑉, 𝑅) = sup(𝑍, 𝑉, 𝑅))
42, 3opeq12d 4881 . . . 4 (𝑝 = 𝑍 → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩)
5 simp3 1139 . . . 4 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → 𝑍𝑃)
6 opex 5469 . . . . 5 ⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ ∈ V
76a1i 11 . . . 4 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → ⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ ∈ V)
81, 4, 5, 7fvmptd3 7039 . . 3 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → (𝐹𝑍) = ⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩)
9 infeq1 9516 . . . . 5 (𝑝 = 𝑊 → inf(𝑝, 𝑉, 𝑅) = inf(𝑊, 𝑉, 𝑅))
10 supeq1 9485 . . . . 5 (𝑝 = 𝑊 → sup(𝑝, 𝑉, 𝑅) = sup(𝑊, 𝑉, 𝑅))
119, 10opeq12d 4881 . . . 4 (𝑝 = 𝑊 → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩)
12 simp2 1138 . . . 4 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → 𝑊𝑃)
13 opex 5469 . . . . 5 ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ ∈ V
1413a1i 11 . . . 4 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ ∈ V)
151, 11, 12, 14fvmptd3 7039 . . 3 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → (𝐹𝑊) = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩)
168, 15eqeq12d 2753 . 2 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → ((𝐹𝑍) = (𝐹𝑊) ↔ ⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩))
17 prproropf1o.p . . . . 5 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
1817prpair 47488 . . . 4 (𝑍𝑃 ↔ ∃𝑐𝑉𝑑𝑉 (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑))
1917prpair 47488 . . . . 5 (𝑊𝑃 ↔ ∃𝑎𝑉𝑏𝑉 (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏))
20 id 22 . . . . . . . . . . . . . . . 16 (𝑅 Or 𝑉𝑅 Or 𝑉)
2120infexd 9523 . . . . . . . . . . . . . . 15 (𝑅 Or 𝑉 → inf({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V)
2220supexd 9493 . . . . . . . . . . . . . . 15 (𝑅 Or 𝑉 → sup({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V)
2321, 22jca 511 . . . . . . . . . . . . . 14 (𝑅 Or 𝑉 → (inf({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V))
2423ad4antr 732 . . . . . . . . . . . . 13 (((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑)) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V))
25 opthg 5482 . . . . . . . . . . . . 13 ((inf({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V) → (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ↔ (inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅))))
2624, 25syl 17 . . . . . . . . . . . 12 (((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑)) → (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ↔ (inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅))))
27 solin 5619 . . . . . . . . . . . . . . . . . . 19 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎))
28 infpr 9543 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑎𝑅𝑏, 𝑎, 𝑏))
29283expb 1121 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑎𝑅𝑏, 𝑎, 𝑏))
30 iftrue 4531 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎𝑅𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑎)
3129, 30sylan9eqr 2799 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = 𝑎)
3231eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ↔ inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎))
33 suppr 9511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑏𝑅𝑎, 𝑎, 𝑏))
34333expb 1121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑏𝑅𝑎, 𝑎, 𝑏))
3534adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑏𝑅𝑎, 𝑎, 𝑏))
36 sotric 5622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑅𝑏 ↔ ¬ (𝑎 = 𝑏𝑏𝑅𝑎)))
37 ioran 986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (¬ (𝑎 = 𝑏𝑏𝑅𝑎) ↔ (¬ 𝑎 = 𝑏 ∧ ¬ 𝑏𝑅𝑎))
38 iffalse 4534 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑏𝑅𝑎 → if(𝑏𝑅𝑎, 𝑎, 𝑏) = 𝑏)
3937, 38simplbiim 504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (¬ (𝑎 = 𝑏𝑏𝑅𝑎) → if(𝑏𝑅𝑎, 𝑎, 𝑏) = 𝑏)
4036, 39biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑅𝑏 → if(𝑏𝑅𝑎, 𝑎, 𝑏) = 𝑏))
4140impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → if(𝑏𝑅𝑎, 𝑎, 𝑏) = 𝑏)
4235, 41eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = 𝑏)
4342eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅) ↔ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏))
4432, 43anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) ↔ (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏)))
4544adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) ↔ (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏)))
46 solin 5619 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 Or 𝑉 ∧ (𝑐𝑉𝑑𝑉)) → (𝑐𝑅𝑑𝑐 = 𝑑𝑑𝑅𝑐))
4746adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → (𝑐𝑅𝑑𝑐 = 𝑑𝑑𝑅𝑐))
48 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → 𝑅 Or 𝑉)
49 simprll 779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → 𝑐𝑉)
50 simprlr 780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → 𝑑𝑉)
51 infpr 9543 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑅 Or 𝑉𝑐𝑉𝑑𝑉) → inf({𝑐, 𝑑}, 𝑉, 𝑅) = if(𝑐𝑅𝑑, 𝑐, 𝑑))
5248, 49, 50, 51syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → inf({𝑐, 𝑑}, 𝑉, 𝑅) = if(𝑐𝑅𝑑, 𝑐, 𝑑))
53 iftrue 4531 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐𝑅𝑑 → if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑐)
5452, 53sylan9eqr 2799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑐)
5554eqeq1d 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎𝑐 = 𝑎))
56 suppr 9511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑅 Or 𝑉𝑐𝑉𝑑𝑉) → sup({𝑐, 𝑑}, 𝑉, 𝑅) = if(𝑑𝑅𝑐, 𝑐, 𝑑))
5748, 49, 50, 56syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → sup({𝑐, 𝑑}, 𝑉, 𝑅) = if(𝑑𝑅𝑐, 𝑐, 𝑑))
5857adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → sup({𝑐, 𝑑}, 𝑉, 𝑅) = if(𝑑𝑅𝑐, 𝑐, 𝑑))
59 sotric 5622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑅 Or 𝑉 ∧ (𝑐𝑉𝑑𝑉)) → (𝑐𝑅𝑑 ↔ ¬ (𝑐 = 𝑑𝑑𝑅𝑐)))
6059adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → (𝑐𝑅𝑑 ↔ ¬ (𝑐 = 𝑑𝑑𝑅𝑐)))
61 ioran 986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (¬ (𝑐 = 𝑑𝑑𝑅𝑐) ↔ (¬ 𝑐 = 𝑑 ∧ ¬ 𝑑𝑅𝑐))
62 iffalse 4534 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 𝑑𝑅𝑐 → if(𝑑𝑅𝑐, 𝑐, 𝑑) = 𝑑)
6361, 62simplbiim 504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (¬ (𝑐 = 𝑑𝑑𝑅𝑐) → if(𝑑𝑅𝑐, 𝑐, 𝑑) = 𝑑)
6460, 63biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → (𝑐𝑅𝑑 → if(𝑑𝑅𝑐, 𝑐, 𝑑) = 𝑑))
6564impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → if(𝑑𝑅𝑐, 𝑐, 𝑑) = 𝑑)
6658, 65eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑑)
6766eqeq1d 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → (sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏𝑑 = 𝑏))
6855, 67anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) ↔ (𝑐 = 𝑎𝑑 = 𝑏)))
69 orc 868 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑐 = 𝑎𝑑 = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))
7068, 69biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
7170ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐𝑅𝑑 → ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
72 eqneqall 2951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑑 → (𝑐𝑑 → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
7372adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑑 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
7473adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = 𝑑 → ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
7552adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → inf({𝑐, 𝑑}, 𝑉, 𝑅) = if(𝑐𝑅𝑑, 𝑐, 𝑑))
7675eqeq1d 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ↔ if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎))
77 iftrue 4531 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑑𝑅𝑐 → if(𝑑𝑅𝑐, 𝑐, 𝑑) = 𝑐)
7857, 77sylan9eqr 2799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑐)
7978eqeq1d 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → (sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏𝑐 = 𝑏))
8076, 79anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) ↔ (if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎𝑐 = 𝑏)))
81 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → (𝑐𝑉𝑑𝑉))
8281ancomd 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → (𝑑𝑉𝑐𝑉))
83 sotric 5622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑅 Or 𝑉 ∧ (𝑑𝑉𝑐𝑉)) → (𝑑𝑅𝑐 ↔ ¬ (𝑑 = 𝑐𝑐𝑅𝑑)))
8482, 83sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → (𝑑𝑅𝑐 ↔ ¬ (𝑑 = 𝑐𝑐𝑅𝑑)))
85 ioran 986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (¬ (𝑑 = 𝑐𝑐𝑅𝑑) ↔ (¬ 𝑑 = 𝑐 ∧ ¬ 𝑐𝑅𝑑))
86 iffalse 4534 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 𝑐𝑅𝑑 → if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑑)
8785, 86simplbiim 504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (¬ (𝑑 = 𝑐𝑐𝑅𝑑) → if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑑)
8887eqeq1d 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (¬ (𝑑 = 𝑐𝑐𝑅𝑑) → (if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎𝑑 = 𝑎))
8984, 88biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → (𝑑𝑅𝑐 → (if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎𝑑 = 𝑎)))
9089impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → (if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎𝑑 = 𝑎))
9190anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎𝑐 = 𝑏) ↔ (𝑑 = 𝑎𝑐 = 𝑏)))
92 olc 869 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑐 = 𝑏𝑑 = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))
9392ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 = 𝑎𝑐 = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))
9491, 93biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎𝑐 = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
9580, 94sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
9695ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑑𝑅𝑐 → ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
9771, 74, 963jaoi 1430 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑐𝑅𝑑𝑐 = 𝑑𝑑𝑅𝑐) → ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
9847, 97mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
9998ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅 Or 𝑉 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
10099ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
101100imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
10245, 101sylbid 240 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
103102ex 412 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
104103a1d 25 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (𝑎𝑏 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))))
105104ex 412 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝑅𝑏 → ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑏 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))))
106 eqneqall 2951 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑏 → (𝑎𝑏 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))))
107106a1d 25 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑏 → ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑏 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))))
10829adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑎𝑅𝑏, 𝑎, 𝑏))
109 sotric 5622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 Or 𝑉 ∧ (𝑏𝑉𝑎𝑉)) → (𝑏𝑅𝑎 ↔ ¬ (𝑏 = 𝑎𝑎𝑅𝑏)))
110109ancom2s 650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑏𝑅𝑎 ↔ ¬ (𝑏 = 𝑎𝑎𝑅𝑏)))
111 ioran 986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (¬ (𝑏 = 𝑎𝑎𝑅𝑏) ↔ (¬ 𝑏 = 𝑎 ∧ ¬ 𝑎𝑅𝑏))
112 iffalse 4534 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑎𝑅𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏)
113111, 112simplbiim 504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (¬ (𝑏 = 𝑎𝑎𝑅𝑏) → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏)
114110, 113biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑏𝑅𝑎 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏))
115114impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏)
116108, 115eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = 𝑏)
117116eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ↔ inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏))
118 iftrue 4531 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑏𝑅𝑎 → if(𝑏𝑅𝑎, 𝑎, 𝑏) = 𝑎)
11934, 118sylan9eqr 2799 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = 𝑎)
120119eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅) ↔ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎))
121117, 120anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) ↔ (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎)))
122121adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) ↔ (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎)))
12354eqeq1d 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏𝑐 = 𝑏))
12466eqeq1d 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → (sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎𝑑 = 𝑎))
125123, 124anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) ↔ (𝑐 = 𝑏𝑑 = 𝑎)))
126125, 92biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
127126ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐𝑅𝑑 → ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
128 eqneqall 2951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑑 → (𝑐𝑑 → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
129128adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑑 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
130129adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = 𝑑 → ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
13184, 87biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → (𝑑𝑅𝑐 → if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑑))
132131impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑑)
13375, 132eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑑)
134133eqeq1d 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏𝑑 = 𝑏))
13578eqeq1d 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → (sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎𝑐 = 𝑎))
136134, 135anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) ↔ (𝑑 = 𝑏𝑐 = 𝑎)))
13769ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 = 𝑏𝑐 = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))
138136, 137biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
139138ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑑𝑅𝑐 → ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
140127, 130, 1393jaoi 1430 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑐𝑅𝑑𝑐 = 𝑑𝑑𝑅𝑐) → ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
14147, 140mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
142141ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅 Or 𝑉 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
143142ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
144143imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
145122, 144sylbid 240 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
146145ex 412 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
147146a1d 25 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (𝑎𝑏 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))))
148147ex 412 . . . . . . . . . . . . . . . . . . . 20 (𝑏𝑅𝑎 → ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑏 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))))
149105, 107, 1483jaoi 1430 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎) → ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑏 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))))
15027, 149mpcom 38 . . . . . . . . . . . . . . . . . 18 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑏 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))))
151150adantld 490 . . . . . . . . . . . . . . . . 17 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → ((𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))))
152151imp 406 . . . . . . . . . . . . . . . 16 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
153152expdimp 452 . . . . . . . . . . . . . . 15 ((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) → (𝑐𝑑 → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
154153adantld 490 . . . . . . . . . . . . . 14 ((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) → ((𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
155154imp 406 . . . . . . . . . . . . 13 (((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
156 vex 3484 . . . . . . . . . . . . . 14 𝑐 ∈ V
157 vex 3484 . . . . . . . . . . . . . 14 𝑑 ∈ V
158 vex 3484 . . . . . . . . . . . . . 14 𝑎 ∈ V
159 vex 3484 . . . . . . . . . . . . . 14 𝑏 ∈ V
160156, 157, 158, 159preq12b 4850 . . . . . . . . . . . . 13 ({𝑐, 𝑑} = {𝑎, 𝑏} ↔ ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))
161155, 160imbitrrdi 252 . . . . . . . . . . . 12 (((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → {𝑐, 𝑑} = {𝑎, 𝑏}))
16226, 161sylbid 240 . . . . . . . . . . 11 (((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑)) → (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ → {𝑐, 𝑑} = {𝑎, 𝑏}))
163 infeq1 9516 . . . . . . . . . . . . . . . . . . . 20 (𝑍 = {𝑐, 𝑑} → inf(𝑍, 𝑉, 𝑅) = inf({𝑐, 𝑑}, 𝑉, 𝑅))
164 supeq1 9485 . . . . . . . . . . . . . . . . . . . 20 (𝑍 = {𝑐, 𝑑} → sup(𝑍, 𝑉, 𝑅) = sup({𝑐, 𝑑}, 𝑉, 𝑅))
165163, 164opeq12d 4881 . . . . . . . . . . . . . . . . . . 19 (𝑍 = {𝑐, 𝑑} → ⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩)
166 infeq1 9516 . . . . . . . . . . . . . . . . . . . 20 (𝑊 = {𝑎, 𝑏} → inf(𝑊, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅))
167 supeq1 9485 . . . . . . . . . . . . . . . . . . . 20 (𝑊 = {𝑎, 𝑏} → sup(𝑊, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅))
168166, 167opeq12d 4881 . . . . . . . . . . . . . . . . . . 19 (𝑊 = {𝑎, 𝑏} → ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩)
169165, 168eqeqan12rd 2752 . . . . . . . . . . . . . . . . . 18 ((𝑊 = {𝑎, 𝑏} ∧ 𝑍 = {𝑐, 𝑑}) → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ ↔ ⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩))
170 eqeq12 2754 . . . . . . . . . . . . . . . . . . 19 ((𝑍 = {𝑐, 𝑑} ∧ 𝑊 = {𝑎, 𝑏}) → (𝑍 = 𝑊 ↔ {𝑐, 𝑑} = {𝑎, 𝑏}))
171170ancoms 458 . . . . . . . . . . . . . . . . . 18 ((𝑊 = {𝑎, 𝑏} ∧ 𝑍 = {𝑐, 𝑑}) → (𝑍 = 𝑊 ↔ {𝑐, 𝑑} = {𝑎, 𝑏}))
172169, 171imbi12d 344 . . . . . . . . . . . . . . . . 17 ((𝑊 = {𝑎, 𝑏} ∧ 𝑍 = {𝑐, 𝑑}) → ((⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊) ↔ (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ → {𝑐, 𝑑} = {𝑎, 𝑏})))
173172ex 412 . . . . . . . . . . . . . . . 16 (𝑊 = {𝑎, 𝑏} → (𝑍 = {𝑐, 𝑑} → ((⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊) ↔ (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ → {𝑐, 𝑑} = {𝑎, 𝑏}))))
174173ad2antrl 728 . . . . . . . . . . . . . . 15 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (𝑍 = {𝑐, 𝑑} → ((⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊) ↔ (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ → {𝑐, 𝑑} = {𝑎, 𝑏}))))
175174adantr 480 . . . . . . . . . . . . . 14 ((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) → (𝑍 = {𝑐, 𝑑} → ((⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊) ↔ (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ → {𝑐, 𝑑} = {𝑎, 𝑏}))))
176175com12 32 . . . . . . . . . . . . 13 (𝑍 = {𝑐, 𝑑} → ((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) → ((⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊) ↔ (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ → {𝑐, 𝑑} = {𝑎, 𝑏}))))
177176adantr 480 . . . . . . . . . . . 12 ((𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑) → ((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) → ((⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊) ↔ (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ → {𝑐, 𝑑} = {𝑎, 𝑏}))))
178177impcom 407 . . . . . . . . . . 11 (((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑)) → ((⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊) ↔ (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ → {𝑐, 𝑑} = {𝑎, 𝑏})))
179162, 178mpbird 257 . . . . . . . . . 10 (((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑)) → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊))
180179ex 412 . . . . . . . . 9 ((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) → ((𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑) → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊)))
181180rexlimdvva 3213 . . . . . . . 8 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (∃𝑐𝑉𝑑𝑉 (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑) → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊)))
182181ex 412 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → ((𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (∃𝑐𝑉𝑑𝑉 (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑) → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊))))
183182rexlimdvva 3213 . . . . . 6 (𝑅 Or 𝑉 → (∃𝑎𝑉𝑏𝑉 (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (∃𝑐𝑉𝑑𝑉 (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑) → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊))))
184183com13 88 . . . . 5 (∃𝑐𝑉𝑑𝑉 (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑) → (∃𝑎𝑉𝑏𝑉 (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (𝑅 Or 𝑉 → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊))))
18519, 184biimtrid 242 . . . 4 (∃𝑐𝑉𝑑𝑉 (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑) → (𝑊𝑃 → (𝑅 Or 𝑉 → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊))))
18618, 185sylbi 217 . . 3 (𝑍𝑃 → (𝑊𝑃 → (𝑅 Or 𝑉 → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊))))
1871863imp31 1112 . 2 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊))
18816, 187sylbid 240 1 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → ((𝐹𝑍) = (𝐹𝑊) → 𝑍 = 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3o 1086  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  {crab 3436  Vcvv 3480  cin 3950  ifcif 4525  𝒫 cpw 4600  {cpr 4628  cop 4632   class class class wbr 5143  cmpt 5225   Or wor 5591   × cxp 5683  cfv 6561  supcsup 9480  infcinf 9481  2c2 12321  chash 14369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370
This theorem is referenced by:  prproropf1o  47494
  Copyright terms: Public domain W3C validator