Step | Hyp | Ref
| Expression |
1 | | prproropf1o.f |
. . . 4
⊢ 𝐹 = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) |
2 | | infeq1 9165 |
. . . . 5
⊢ (𝑝 = 𝑍 → inf(𝑝, 𝑉, 𝑅) = inf(𝑍, 𝑉, 𝑅)) |
3 | | supeq1 9134 |
. . . . 5
⊢ (𝑝 = 𝑍 → sup(𝑝, 𝑉, 𝑅) = sup(𝑍, 𝑉, 𝑅)) |
4 | 2, 3 | opeq12d 4809 |
. . . 4
⊢ (𝑝 = 𝑍 → 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉 = 〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉) |
5 | | simp3 1136 |
. . . 4
⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) → 𝑍 ∈ 𝑃) |
6 | | opex 5373 |
. . . . 5
⊢
〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 ∈ V |
7 | 6 | a1i 11 |
. . . 4
⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) → 〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 ∈ V) |
8 | 1, 4, 5, 7 | fvmptd3 6880 |
. . 3
⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) → (𝐹‘𝑍) = 〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉) |
9 | | infeq1 9165 |
. . . . 5
⊢ (𝑝 = 𝑊 → inf(𝑝, 𝑉, 𝑅) = inf(𝑊, 𝑉, 𝑅)) |
10 | | supeq1 9134 |
. . . . 5
⊢ (𝑝 = 𝑊 → sup(𝑝, 𝑉, 𝑅) = sup(𝑊, 𝑉, 𝑅)) |
11 | 9, 10 | opeq12d 4809 |
. . . 4
⊢ (𝑝 = 𝑊 → 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉 = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉) |
12 | | simp2 1135 |
. . . 4
⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) → 𝑊 ∈ 𝑃) |
13 | | opex 5373 |
. . . . 5
⊢
〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 ∈ V |
14 | 13 | a1i 11 |
. . . 4
⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) → 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 ∈ V) |
15 | 1, 11, 12, 14 | fvmptd3 6880 |
. . 3
⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) → (𝐹‘𝑊) = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉) |
16 | 8, 15 | eqeq12d 2754 |
. 2
⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) → ((𝐹‘𝑍) = (𝐹‘𝑊) ↔ 〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉)) |
17 | | prproropf1o.p |
. . . . 5
⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} |
18 | 17 | prpair 44841 |
. . . 4
⊢ (𝑍 ∈ 𝑃 ↔ ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (𝑍 = {𝑐, 𝑑} ∧ 𝑐 ≠ 𝑑)) |
19 | 17 | prpair 44841 |
. . . . 5
⊢ (𝑊 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
20 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 Or 𝑉 → 𝑅 Or 𝑉) |
21 | 20 | infexd 9172 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 Or 𝑉 → inf({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V) |
22 | 20 | supexd 9142 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 Or 𝑉 → sup({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V) |
23 | 21, 22 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (𝑅 Or 𝑉 → (inf({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V)) |
24 | 23 | ad4antr 728 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐 ≠ 𝑑)) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V)) |
25 | | opthg 5386 |
. . . . . . . . . . . . 13
⊢
((inf({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V) → (〈inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)〉 = 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 ↔ (inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)))) |
26 | 24, 25 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐 ≠ 𝑑)) → (〈inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)〉 = 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 ↔ (inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)))) |
27 | | solin 5519 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎)) |
28 | | infpr 9192 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑅 Or 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑎𝑅𝑏, 𝑎, 𝑏)) |
29 | 28 | 3expb 1118 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑎𝑅𝑏, 𝑎, 𝑏)) |
30 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎𝑅𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑎) |
31 | 29, 30 | sylan9eqr 2801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = 𝑎) |
32 | 31 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ↔ inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎)) |
33 | | suppr 9160 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑅 Or 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑏𝑅𝑎, 𝑎, 𝑏)) |
34 | 33 | 3expb 1118 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑏𝑅𝑎, 𝑎, 𝑏)) |
35 | 34 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑏𝑅𝑎, 𝑎, 𝑏)) |
36 | | sotric 5522 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎𝑅𝑏 ↔ ¬ (𝑎 = 𝑏 ∨ 𝑏𝑅𝑎))) |
37 | | ioran 980 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (¬
(𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) ↔ (¬ 𝑎 = 𝑏 ∧ ¬ 𝑏𝑅𝑎)) |
38 | | iffalse 4465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (¬
𝑏𝑅𝑎 → if(𝑏𝑅𝑎, 𝑎, 𝑏) = 𝑏) |
39 | 37, 38 | simplbiim 504 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (¬
(𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) → if(𝑏𝑅𝑎, 𝑎, 𝑏) = 𝑏) |
40 | 36, 39 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎𝑅𝑏 → if(𝑏𝑅𝑎, 𝑎, 𝑏) = 𝑏)) |
41 | 40 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → if(𝑏𝑅𝑎, 𝑎, 𝑏) = 𝑏) |
42 | 35, 41 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = 𝑏) |
43 | 42 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → (sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅) ↔ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏)) |
44 | 32, 43 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) ↔ (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏))) |
45 | 44 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) ↔ (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏))) |
46 | | solin 5519 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑅 Or 𝑉 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (𝑐𝑅𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑𝑅𝑐)) |
47 | 46 | adantrr 713 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → (𝑐𝑅𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑𝑅𝑐)) |
48 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → 𝑅 Or 𝑉) |
49 | | simprll 775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → 𝑐 ∈ 𝑉) |
50 | | simprlr 776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → 𝑑 ∈ 𝑉) |
51 | | infpr 9192 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑅 Or 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) → inf({𝑐, 𝑑}, 𝑉, 𝑅) = if(𝑐𝑅𝑑, 𝑐, 𝑑)) |
52 | 48, 49, 50, 51 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → inf({𝑐, 𝑑}, 𝑉, 𝑅) = if(𝑐𝑅𝑑, 𝑐, 𝑑)) |
53 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑐𝑅𝑑 → if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑐) |
54 | 52, 53 | sylan9eqr 2801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑐) |
55 | 54 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ↔ 𝑐 = 𝑎)) |
56 | | suppr 9160 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑅 Or 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) → sup({𝑐, 𝑑}, 𝑉, 𝑅) = if(𝑑𝑅𝑐, 𝑐, 𝑑)) |
57 | 48, 49, 50, 56 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → sup({𝑐, 𝑑}, 𝑉, 𝑅) = if(𝑑𝑅𝑐, 𝑐, 𝑑)) |
58 | 57 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → sup({𝑐, 𝑑}, 𝑉, 𝑅) = if(𝑑𝑅𝑐, 𝑐, 𝑑)) |
59 | | sotric 5522 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑅 Or 𝑉 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (𝑐𝑅𝑑 ↔ ¬ (𝑐 = 𝑑 ∨ 𝑑𝑅𝑐))) |
60 | 59 | adantrr 713 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → (𝑐𝑅𝑑 ↔ ¬ (𝑐 = 𝑑 ∨ 𝑑𝑅𝑐))) |
61 | | ioran 980 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (¬
(𝑐 = 𝑑 ∨ 𝑑𝑅𝑐) ↔ (¬ 𝑐 = 𝑑 ∧ ¬ 𝑑𝑅𝑐)) |
62 | | iffalse 4465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (¬
𝑑𝑅𝑐 → if(𝑑𝑅𝑐, 𝑐, 𝑑) = 𝑑) |
63 | 61, 62 | simplbiim 504 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (¬
(𝑐 = 𝑑 ∨ 𝑑𝑅𝑐) → if(𝑑𝑅𝑐, 𝑐, 𝑑) = 𝑑) |
64 | 60, 63 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → (𝑐𝑅𝑑 → if(𝑑𝑅𝑐, 𝑐, 𝑑) = 𝑑)) |
65 | 64 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → if(𝑑𝑅𝑐, 𝑐, 𝑑) = 𝑑) |
66 | 58, 65 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑑) |
67 | 66 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → (sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ↔ 𝑑 = 𝑏)) |
68 | 55, 67 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) ↔ (𝑐 = 𝑎 ∧ 𝑑 = 𝑏))) |
69 | | orc 863 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))) |
70 | 68, 69 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎)))) |
71 | 70 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐𝑅𝑑 → ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
72 | | eqneqall 2953 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑐 = 𝑑 → (𝑐 ≠ 𝑑 → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
73 | 72 | adantld 490 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = 𝑑 → (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
74 | 73 | adantld 490 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 = 𝑑 → ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
75 | 52 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → inf({𝑐, 𝑑}, 𝑉, 𝑅) = if(𝑐𝑅𝑑, 𝑐, 𝑑)) |
76 | 75 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ↔ if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎)) |
77 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑑𝑅𝑐 → if(𝑑𝑅𝑐, 𝑐, 𝑑) = 𝑐) |
78 | 57, 77 | sylan9eqr 2801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑐) |
79 | 78 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → (sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ↔ 𝑐 = 𝑏)) |
80 | 76, 79 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) ↔ (if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎 ∧ 𝑐 = 𝑏))) |
81 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) |
82 | 81 | ancomd 461 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → (𝑑 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) |
83 | | sotric 5522 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑅 Or 𝑉 ∧ (𝑑 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑑𝑅𝑐 ↔ ¬ (𝑑 = 𝑐 ∨ 𝑐𝑅𝑑))) |
84 | 82, 83 | sylan2 592 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → (𝑑𝑅𝑐 ↔ ¬ (𝑑 = 𝑐 ∨ 𝑐𝑅𝑑))) |
85 | | ioran 980 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (¬
(𝑑 = 𝑐 ∨ 𝑐𝑅𝑑) ↔ (¬ 𝑑 = 𝑐 ∧ ¬ 𝑐𝑅𝑑)) |
86 | | iffalse 4465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (¬
𝑐𝑅𝑑 → if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑑) |
87 | 85, 86 | simplbiim 504 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (¬
(𝑑 = 𝑐 ∨ 𝑐𝑅𝑑) → if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑑) |
88 | 87 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (¬
(𝑑 = 𝑐 ∨ 𝑐𝑅𝑑) → (if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎 ↔ 𝑑 = 𝑎)) |
89 | 84, 88 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → (𝑑𝑅𝑐 → (if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎 ↔ 𝑑 = 𝑎))) |
90 | 89 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → (if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎 ↔ 𝑑 = 𝑎)) |
91 | 90 | anbi1d 629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → ((if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎 ∧ 𝑐 = 𝑏) ↔ (𝑑 = 𝑎 ∧ 𝑐 = 𝑏))) |
92 | | olc 864 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑐 = 𝑏 ∧ 𝑑 = 𝑎) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))) |
93 | 92 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑑 = 𝑎 ∧ 𝑐 = 𝑏) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))) |
94 | 91, 93 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → ((if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎 ∧ 𝑐 = 𝑏) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎)))) |
95 | 80, 94 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎)))) |
96 | 95 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑑𝑅𝑐 → ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
97 | 71, 74, 96 | 3jaoi 1425 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑐𝑅𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑𝑅𝑐) → ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
98 | 47, 97 | mpcom 38 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎)))) |
99 | 98 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑅 Or 𝑉 → (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
100 | 99 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
101 | 100 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎)))) |
102 | 45, 101 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎)))) |
103 | 102 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
104 | 103 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → (𝑎 ≠ 𝑏 → (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎)))))) |
105 | 104 | ex 412 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎𝑅𝑏 → ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎 ≠ 𝑏 → (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))))) |
106 | | eqneqall 2953 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝑏 → (𝑎 ≠ 𝑏 → (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎)))))) |
107 | 106 | a1d 25 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑏 → ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎 ≠ 𝑏 → (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))))) |
108 | 29 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑎𝑅𝑏, 𝑎, 𝑏)) |
109 | | sotric 5522 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑅 Or 𝑉 ∧ (𝑏 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉)) → (𝑏𝑅𝑎 ↔ ¬ (𝑏 = 𝑎 ∨ 𝑎𝑅𝑏))) |
110 | 109 | ancom2s 646 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑏𝑅𝑎 ↔ ¬ (𝑏 = 𝑎 ∨ 𝑎𝑅𝑏))) |
111 | | ioran 980 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (¬
(𝑏 = 𝑎 ∨ 𝑎𝑅𝑏) ↔ (¬ 𝑏 = 𝑎 ∧ ¬ 𝑎𝑅𝑏)) |
112 | | iffalse 4465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (¬
𝑎𝑅𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏) |
113 | 111, 112 | simplbiim 504 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (¬
(𝑏 = 𝑎 ∨ 𝑎𝑅𝑏) → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏) |
114 | 110, 113 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑏𝑅𝑎 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏)) |
115 | 114 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏) |
116 | 108, 115 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = 𝑏) |
117 | 116 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ↔ inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏)) |
118 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑏𝑅𝑎 → if(𝑏𝑅𝑎, 𝑎, 𝑏) = 𝑎) |
119 | 34, 118 | sylan9eqr 2801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = 𝑎) |
120 | 119 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → (sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅) ↔ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎)) |
121 | 117, 120 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) ↔ (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎))) |
122 | 121 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) ↔ (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎))) |
123 | 54 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ↔ 𝑐 = 𝑏)) |
124 | 66 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → (sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ↔ 𝑑 = 𝑎)) |
125 | 123, 124 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) ↔ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))) |
126 | 125, 92 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎)))) |
127 | 126 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐𝑅𝑑 → ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
128 | | eqneqall 2953 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑐 = 𝑑 → (𝑐 ≠ 𝑑 → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
129 | 128 | adantld 490 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = 𝑑 → (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
130 | 129 | adantld 490 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 = 𝑑 → ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
131 | 84, 87 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → (𝑑𝑅𝑐 → if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑑)) |
132 | 131 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑑) |
133 | 75, 132 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑑) |
134 | 133 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ↔ 𝑑 = 𝑏)) |
135 | 78 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → (sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ↔ 𝑐 = 𝑎)) |
136 | 134, 135 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) ↔ (𝑑 = 𝑏 ∧ 𝑐 = 𝑎))) |
137 | 69 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑑 = 𝑏 ∧ 𝑐 = 𝑎) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))) |
138 | 136, 137 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎)))) |
139 | 138 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑑𝑅𝑐 → ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
140 | 127, 130,
139 | 3jaoi 1425 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑐𝑅𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑𝑅𝑐) → ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
141 | 47, 140 | mpcom 38 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑅 Or 𝑉 ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎)))) |
142 | 141 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑅 Or 𝑉 → (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
143 | 142 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
144 | 143 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎)))) |
145 | 122, 144 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) ∧ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎)))) |
146 | 145 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
147 | 146 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) → (𝑎 ≠ 𝑏 → (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎)))))) |
148 | 147 | ex 412 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏𝑅𝑎 → ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎 ≠ 𝑏 → (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))))) |
149 | 105, 107,
148 | 3jaoi 1425 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) → ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎 ≠ 𝑏 → (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))))) |
150 | 27, 149 | mpcom 38 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎 ≠ 𝑏 → (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎)))))) |
151 | 150 | adantld 490 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎)))))) |
152 | 151 | imp 406 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ≠ 𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
153 | 152 | expdimp 452 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (𝑐 ≠ 𝑑 → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
154 | 153 | adantld 490 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → ((𝑍 = {𝑐, 𝑑} ∧ 𝑐 ≠ 𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))))) |
155 | 154 | imp 406 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐 ≠ 𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎)))) |
156 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ 𝑐 ∈ V |
157 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ 𝑑 ∈ V |
158 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ 𝑎 ∈ V |
159 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ 𝑏 ∈ V |
160 | 156, 157,
158, 159 | preq12b 4778 |
. . . . . . . . . . . . 13
⊢ ({𝑐, 𝑑} = {𝑎, 𝑏} ↔ ((𝑐 = 𝑎 ∧ 𝑑 = 𝑏) ∨ (𝑐 = 𝑏 ∧ 𝑑 = 𝑎))) |
161 | 155, 160 | syl6ibr 251 |
. . . . . . . . . . . 12
⊢
(((((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐 ≠ 𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → {𝑐, 𝑑} = {𝑎, 𝑏})) |
162 | 26, 161 | sylbid 239 |
. . . . . . . . . . 11
⊢
(((((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐 ≠ 𝑑)) → (〈inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)〉 = 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 → {𝑐, 𝑑} = {𝑎, 𝑏})) |
163 | | infeq1 9165 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑍 = {𝑐, 𝑑} → inf(𝑍, 𝑉, 𝑅) = inf({𝑐, 𝑑}, 𝑉, 𝑅)) |
164 | | supeq1 9134 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑍 = {𝑐, 𝑑} → sup(𝑍, 𝑉, 𝑅) = sup({𝑐, 𝑑}, 𝑉, 𝑅)) |
165 | 163, 164 | opeq12d 4809 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑍 = {𝑐, 𝑑} → 〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 = 〈inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)〉) |
166 | | infeq1 9165 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑊 = {𝑎, 𝑏} → inf(𝑊, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅)) |
167 | | supeq1 9134 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑊 = {𝑎, 𝑏} → sup(𝑊, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) |
168 | 166, 167 | opeq12d 4809 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑊 = {𝑎, 𝑏} → 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 = 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉) |
169 | 165, 168 | eqeqan12rd 2753 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑊 = {𝑎, 𝑏} ∧ 𝑍 = {𝑐, 𝑑}) → (〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 ↔ 〈inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)〉 = 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉)) |
170 | | eqeq12 2755 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑍 = {𝑐, 𝑑} ∧ 𝑊 = {𝑎, 𝑏}) → (𝑍 = 𝑊 ↔ {𝑐, 𝑑} = {𝑎, 𝑏})) |
171 | 170 | ancoms 458 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑊 = {𝑎, 𝑏} ∧ 𝑍 = {𝑐, 𝑑}) → (𝑍 = 𝑊 ↔ {𝑐, 𝑑} = {𝑎, 𝑏})) |
172 | 169, 171 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑊 = {𝑎, 𝑏} ∧ 𝑍 = {𝑐, 𝑑}) → ((〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 → 𝑍 = 𝑊) ↔ (〈inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)〉 = 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 → {𝑐, 𝑑} = {𝑎, 𝑏}))) |
173 | 172 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (𝑊 = {𝑎, 𝑏} → (𝑍 = {𝑐, 𝑑} → ((〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 → 𝑍 = 𝑊) ↔ (〈inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)〉 = 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 → {𝑐, 𝑑} = {𝑎, 𝑏})))) |
174 | 173 | ad2antrl 724 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → (𝑍 = {𝑐, 𝑑} → ((〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 → 𝑍 = 𝑊) ↔ (〈inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)〉 = 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 → {𝑐, 𝑑} = {𝑎, 𝑏})))) |
175 | 174 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (𝑍 = {𝑐, 𝑑} → ((〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 → 𝑍 = 𝑊) ↔ (〈inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)〉 = 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 → {𝑐, 𝑑} = {𝑎, 𝑏})))) |
176 | 175 | com12 32 |
. . . . . . . . . . . . 13
⊢ (𝑍 = {𝑐, 𝑑} → ((((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → ((〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 → 𝑍 = 𝑊) ↔ (〈inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)〉 = 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 → {𝑐, 𝑑} = {𝑎, 𝑏})))) |
177 | 176 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑍 = {𝑐, 𝑑} ∧ 𝑐 ≠ 𝑑) → ((((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → ((〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 → 𝑍 = 𝑊) ↔ (〈inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)〉 = 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 → {𝑐, 𝑑} = {𝑎, 𝑏})))) |
178 | 177 | impcom 407 |
. . . . . . . . . . 11
⊢
(((((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐 ≠ 𝑑)) → ((〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 → 𝑍 = 𝑊) ↔ (〈inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)〉 = 〈inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)〉 → {𝑐, 𝑑} = {𝑎, 𝑏}))) |
179 | 162, 178 | mpbird 256 |
. . . . . . . . . 10
⊢
(((((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐 ≠ 𝑑)) → (〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 → 𝑍 = 𝑊)) |
180 | 179 | ex 412 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → ((𝑍 = {𝑐, 𝑑} ∧ 𝑐 ≠ 𝑑) → (〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 → 𝑍 = 𝑊))) |
181 | 180 | rexlimdvva 3222 |
. . . . . . . 8
⊢ (((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → (∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (𝑍 = {𝑐, 𝑑} ∧ 𝑐 ≠ 𝑑) → (〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 → 𝑍 = 𝑊))) |
182 | 181 | ex 412 |
. . . . . . 7
⊢ ((𝑅 Or 𝑉 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → (∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (𝑍 = {𝑐, 𝑑} ∧ 𝑐 ≠ 𝑑) → (〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 → 𝑍 = 𝑊)))) |
183 | 182 | rexlimdvva 3222 |
. . . . . 6
⊢ (𝑅 Or 𝑉 → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → (∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (𝑍 = {𝑐, 𝑑} ∧ 𝑐 ≠ 𝑑) → (〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 → 𝑍 = 𝑊)))) |
184 | 183 | com13 88 |
. . . . 5
⊢
(∃𝑐 ∈
𝑉 ∃𝑑 ∈ 𝑉 (𝑍 = {𝑐, 𝑑} ∧ 𝑐 ≠ 𝑑) → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑊 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → (𝑅 Or 𝑉 → (〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 → 𝑍 = 𝑊)))) |
185 | 19, 184 | syl5bi 241 |
. . . 4
⊢
(∃𝑐 ∈
𝑉 ∃𝑑 ∈ 𝑉 (𝑍 = {𝑐, 𝑑} ∧ 𝑐 ≠ 𝑑) → (𝑊 ∈ 𝑃 → (𝑅 Or 𝑉 → (〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 → 𝑍 = 𝑊)))) |
186 | 18, 185 | sylbi 216 |
. . 3
⊢ (𝑍 ∈ 𝑃 → (𝑊 ∈ 𝑃 → (𝑅 Or 𝑉 → (〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 → 𝑍 = 𝑊)))) |
187 | 186 | 3imp31 1110 |
. 2
⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) → (〈inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)〉 = 〈inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)〉 → 𝑍 = 𝑊)) |
188 | 16, 187 | sylbid 239 |
1
⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) → ((𝐹‘𝑍) = (𝐹‘𝑊) → 𝑍 = 𝑊)) |