Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem4 Structured version   Visualization version   GIF version

Theorem prproropf1olem4 43042
Description: Lemma 4 for prproropf1o 43043. (Contributed by AV, 14-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
prproropf1o.f 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
Assertion
Ref Expression
prproropf1olem4 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → ((𝐹𝑍) = (𝐹𝑊) → 𝑍 = 𝑊))
Distinct variable groups:   𝑉,𝑝   𝑊,𝑝   𝑂,𝑝   𝑃,𝑝   𝑅,𝑝   𝑍,𝑝
Allowed substitution hint:   𝐹(𝑝)

Proof of Theorem prproropf1olem4
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prproropf1o.f . . . 4 𝐹 = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
2 infeq1 8735 . . . . 5 (𝑝 = 𝑍 → inf(𝑝, 𝑉, 𝑅) = inf(𝑍, 𝑉, 𝑅))
3 supeq1 8704 . . . . 5 (𝑝 = 𝑍 → sup(𝑝, 𝑉, 𝑅) = sup(𝑍, 𝑉, 𝑅))
42, 3opeq12d 4685 . . . 4 (𝑝 = 𝑍 → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩)
5 simp3 1118 . . . 4 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → 𝑍𝑃)
6 opex 5213 . . . . 5 ⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ ∈ V
76a1i 11 . . . 4 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → ⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ ∈ V)
81, 4, 5, 7fvmptd3 6617 . . 3 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → (𝐹𝑍) = ⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩)
9 infeq1 8735 . . . . 5 (𝑝 = 𝑊 → inf(𝑝, 𝑉, 𝑅) = inf(𝑊, 𝑉, 𝑅))
10 supeq1 8704 . . . . 5 (𝑝 = 𝑊 → sup(𝑝, 𝑉, 𝑅) = sup(𝑊, 𝑉, 𝑅))
119, 10opeq12d 4685 . . . 4 (𝑝 = 𝑊 → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩)
12 simp2 1117 . . . 4 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → 𝑊𝑃)
13 opex 5213 . . . . 5 ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ ∈ V
1413a1i 11 . . . 4 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ ∈ V)
151, 11, 12, 14fvmptd3 6617 . . 3 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → (𝐹𝑊) = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩)
168, 15eqeq12d 2793 . 2 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → ((𝐹𝑍) = (𝐹𝑊) ↔ ⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩))
17 prproropf1o.p . . . . 5 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
1817prpair 43037 . . . 4 (𝑍𝑃 ↔ ∃𝑐𝑉𝑑𝑉 (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑))
1917prpair 43037 . . . . 5 (𝑊𝑃 ↔ ∃𝑎𝑉𝑏𝑉 (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏))
20 id 22 . . . . . . . . . . . . . . . 16 (𝑅 Or 𝑉𝑅 Or 𝑉)
2120infexd 8742 . . . . . . . . . . . . . . 15 (𝑅 Or 𝑉 → inf({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V)
2220supexd 8712 . . . . . . . . . . . . . . 15 (𝑅 Or 𝑉 → sup({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V)
2321, 22jca 504 . . . . . . . . . . . . . 14 (𝑅 Or 𝑉 → (inf({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V))
2423ad4antr 719 . . . . . . . . . . . . 13 (((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑)) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V))
25 opthg 5226 . . . . . . . . . . . . 13 ((inf({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) ∈ V) → (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ↔ (inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅))))
2624, 25syl 17 . . . . . . . . . . . 12 (((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑)) → (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ ↔ (inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅))))
27 solin 5350 . . . . . . . . . . . . . . . . . . 19 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎))
28 infpr 8762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑎𝑅𝑏, 𝑎, 𝑏))
29283expb 1100 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑎𝑅𝑏, 𝑎, 𝑏))
30 iftrue 4356 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎𝑅𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑎)
3129, 30sylan9eqr 2836 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = 𝑎)
3231eqeq2d 2788 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ↔ inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎))
33 suppr 8730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 Or 𝑉𝑎𝑉𝑏𝑉) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑏𝑅𝑎, 𝑎, 𝑏))
34333expb 1100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑏𝑅𝑎, 𝑎, 𝑏))
3534adantl 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑏𝑅𝑎, 𝑎, 𝑏))
36 sotric 5353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑅𝑏 ↔ ¬ (𝑎 = 𝑏𝑏𝑅𝑎)))
37 ioran 966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (¬ (𝑎 = 𝑏𝑏𝑅𝑎) ↔ (¬ 𝑎 = 𝑏 ∧ ¬ 𝑏𝑅𝑎))
38 iffalse 4359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑏𝑅𝑎 → if(𝑏𝑅𝑎, 𝑎, 𝑏) = 𝑏)
3937, 38simplbiim 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (¬ (𝑎 = 𝑏𝑏𝑅𝑎) → if(𝑏𝑅𝑎, 𝑎, 𝑏) = 𝑏)
4036, 39syl6bi 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑅𝑏 → if(𝑏𝑅𝑎, 𝑎, 𝑏) = 𝑏))
4140impcom 399 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → if(𝑏𝑅𝑎, 𝑎, 𝑏) = 𝑏)
4235, 41eqtrd 2814 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = 𝑏)
4342eqeq2d 2788 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅) ↔ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏))
4432, 43anbi12d 621 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) ↔ (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏)))
4544adantr 473 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) ↔ (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏)))
46 solin 5350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 Or 𝑉 ∧ (𝑐𝑉𝑑𝑉)) → (𝑐𝑅𝑑𝑐 = 𝑑𝑑𝑅𝑐))
4746adantrr 704 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → (𝑐𝑅𝑑𝑐 = 𝑑𝑑𝑅𝑐))
48 simpl 475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → 𝑅 Or 𝑉)
49 simprll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → 𝑐𝑉)
50 simprlr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → 𝑑𝑉)
51 infpr 8762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑅 Or 𝑉𝑐𝑉𝑑𝑉) → inf({𝑐, 𝑑}, 𝑉, 𝑅) = if(𝑐𝑅𝑑, 𝑐, 𝑑))
5248, 49, 50, 51syl3anc 1351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → inf({𝑐, 𝑑}, 𝑉, 𝑅) = if(𝑐𝑅𝑑, 𝑐, 𝑑))
53 iftrue 4356 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐𝑅𝑑 → if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑐)
5452, 53sylan9eqr 2836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑐)
5554eqeq1d 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎𝑐 = 𝑎))
56 suppr 8730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑅 Or 𝑉𝑐𝑉𝑑𝑉) → sup({𝑐, 𝑑}, 𝑉, 𝑅) = if(𝑑𝑅𝑐, 𝑐, 𝑑))
5748, 49, 50, 56syl3anc 1351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → sup({𝑐, 𝑑}, 𝑉, 𝑅) = if(𝑑𝑅𝑐, 𝑐, 𝑑))
5857adantl 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → sup({𝑐, 𝑑}, 𝑉, 𝑅) = if(𝑑𝑅𝑐, 𝑐, 𝑑))
59 sotric 5353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑅 Or 𝑉 ∧ (𝑐𝑉𝑑𝑉)) → (𝑐𝑅𝑑 ↔ ¬ (𝑐 = 𝑑𝑑𝑅𝑐)))
6059adantrr 704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → (𝑐𝑅𝑑 ↔ ¬ (𝑐 = 𝑑𝑑𝑅𝑐)))
61 ioran 966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (¬ (𝑐 = 𝑑𝑑𝑅𝑐) ↔ (¬ 𝑐 = 𝑑 ∧ ¬ 𝑑𝑅𝑐))
62 iffalse 4359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 𝑑𝑅𝑐 → if(𝑑𝑅𝑐, 𝑐, 𝑑) = 𝑑)
6361, 62simplbiim 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (¬ (𝑐 = 𝑑𝑑𝑅𝑐) → if(𝑑𝑅𝑐, 𝑐, 𝑑) = 𝑑)
6460, 63syl6bi 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → (𝑐𝑅𝑑 → if(𝑑𝑅𝑐, 𝑐, 𝑑) = 𝑑))
6564impcom 399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → if(𝑑𝑅𝑐, 𝑐, 𝑑) = 𝑑)
6658, 65eqtrd 2814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑑)
6766eqeq1d 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → (sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏𝑑 = 𝑏))
6855, 67anbi12d 621 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) ↔ (𝑐 = 𝑎𝑑 = 𝑏)))
69 orc 853 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑐 = 𝑎𝑑 = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))
7068, 69syl6bi 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
7170ex 405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐𝑅𝑑 → ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
72 eqneqall 2978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑑 → (𝑐𝑑 → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
7372adantld 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑑 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
7473adantld 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = 𝑑 → ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
7552adantl 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → inf({𝑐, 𝑑}, 𝑉, 𝑅) = if(𝑐𝑅𝑑, 𝑐, 𝑑))
7675eqeq1d 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ↔ if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎))
77 iftrue 4356 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑑𝑅𝑐 → if(𝑑𝑅𝑐, 𝑐, 𝑑) = 𝑐)
7857, 77sylan9eqr 2836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑐)
7978eqeq1d 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → (sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏𝑐 = 𝑏))
8076, 79anbi12d 621 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) ↔ (if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎𝑐 = 𝑏)))
81 simpl 475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → (𝑐𝑉𝑑𝑉))
8281ancomd 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → (𝑑𝑉𝑐𝑉))
83 sotric 5353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑅 Or 𝑉 ∧ (𝑑𝑉𝑐𝑉)) → (𝑑𝑅𝑐 ↔ ¬ (𝑑 = 𝑐𝑐𝑅𝑑)))
8482, 83sylan2 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → (𝑑𝑅𝑐 ↔ ¬ (𝑑 = 𝑐𝑐𝑅𝑑)))
85 ioran 966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (¬ (𝑑 = 𝑐𝑐𝑅𝑑) ↔ (¬ 𝑑 = 𝑐 ∧ ¬ 𝑐𝑅𝑑))
86 iffalse 4359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 𝑐𝑅𝑑 → if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑑)
8785, 86simplbiim 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (¬ (𝑑 = 𝑐𝑐𝑅𝑑) → if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑑)
8887eqeq1d 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (¬ (𝑑 = 𝑐𝑐𝑅𝑑) → (if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎𝑑 = 𝑎))
8984, 88syl6bi 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → (𝑑𝑅𝑐 → (if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎𝑑 = 𝑎)))
9089impcom 399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → (if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎𝑑 = 𝑎))
9190anbi1d 620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎𝑐 = 𝑏) ↔ (𝑑 = 𝑎𝑐 = 𝑏)))
92 olc 854 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑐 = 𝑏𝑑 = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))
9392ancoms 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 = 𝑎𝑐 = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))
9491, 93syl6bi 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑎𝑐 = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
9580, 94sylbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
9695ex 405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑑𝑅𝑐 → ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
9771, 74, 963jaoi 1407 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑐𝑅𝑑𝑐 = 𝑑𝑑𝑅𝑐) → ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
9847, 97mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
9998ex 405 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅 Or 𝑉 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
10099ad2antrl 715 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
101100imp 398 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
10245, 101sylbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
103102ex 405 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
104103a1d 25 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎𝑅𝑏 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (𝑎𝑏 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))))
105104ex 405 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝑅𝑏 → ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑏 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))))
106 eqneqall 2978 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑏 → (𝑎𝑏 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))))
107106a1d 25 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑏 → ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑏 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))))
10829adantl 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = if(𝑎𝑅𝑏, 𝑎, 𝑏))
109 sotric 5353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 Or 𝑉 ∧ (𝑏𝑉𝑎𝑉)) → (𝑏𝑅𝑎 ↔ ¬ (𝑏 = 𝑎𝑎𝑅𝑏)))
110109ancom2s 637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑏𝑅𝑎 ↔ ¬ (𝑏 = 𝑎𝑎𝑅𝑏)))
111 ioran 966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (¬ (𝑏 = 𝑎𝑎𝑅𝑏) ↔ (¬ 𝑏 = 𝑎 ∧ ¬ 𝑎𝑅𝑏))
112 iffalse 4359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑎𝑅𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏)
113111, 112simplbiim 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (¬ (𝑏 = 𝑎𝑎𝑅𝑏) → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏)
114110, 113syl6bi 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑏𝑅𝑎 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏))
115114impcom 399 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏)
116108, 115eqtrd 2814 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → inf({𝑎, 𝑏}, 𝑉, 𝑅) = 𝑏)
117116eqeq2d 2788 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ↔ inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏))
118 iftrue 4356 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑏𝑅𝑎 → if(𝑏𝑅𝑎, 𝑎, 𝑏) = 𝑎)
11934, 118sylan9eqr 2836 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → sup({𝑎, 𝑏}, 𝑉, 𝑅) = 𝑎)
120119eqeq2d 2788 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅) ↔ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎))
121117, 120anbi12d 621 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) ↔ (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎)))
122121adantr 473 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) ↔ (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎)))
12354eqeq1d 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏𝑐 = 𝑏))
12466eqeq1d 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → (sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎𝑑 = 𝑎))
125123, 124anbi12d 621 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) ↔ (𝑐 = 𝑏𝑑 = 𝑎)))
126125, 92syl6bi 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑐𝑅𝑑 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
127126ex 405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐𝑅𝑑 → ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
128 eqneqall 2978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑑 → (𝑐𝑑 → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
129128adantld 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑑 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
130129adantld 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = 𝑑 → ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
13184, 87syl6bi 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → (𝑑𝑅𝑐 → if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑑))
132131impcom 399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → if(𝑐𝑅𝑑, 𝑐, 𝑑) = 𝑑)
13375, 132eqtrd 2814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑑)
134133eqeq1d 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → (inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏𝑑 = 𝑏))
13578eqeq1d 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → (sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎𝑐 = 𝑎))
136134, 135anbi12d 621 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) ↔ (𝑑 = 𝑏𝑐 = 𝑎)))
13769ancoms 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 = 𝑏𝑐 = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))
138136, 137syl6bi 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑𝑅𝑐 ∧ (𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑))) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
139138ex 405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑑𝑅𝑐 → ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
140127, 130, 1393jaoi 1407 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑐𝑅𝑑𝑐 = 𝑑𝑑𝑅𝑐) → ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
14147, 140mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 Or 𝑉 ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
142141ex 405 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅 Or 𝑉 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
143142ad2antrl 715 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
144143imp 398 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑏 ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = 𝑎) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
145122, 144sylbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) ∧ ((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
146145ex 405 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
147146a1d 25 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏𝑅𝑎 ∧ (𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉))) → (𝑎𝑏 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))))
148147ex 405 . . . . . . . . . . . . . . . . . . . 20 (𝑏𝑅𝑎 → ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑏 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))))
149105, 107, 1483jaoi 1407 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎) → ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑏 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))))
15027, 149mpcom 38 . . . . . . . . . . . . . . . . . 18 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑏 → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))))
151150adantld 483 . . . . . . . . . . . . . . . . 17 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → ((𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))))
152151imp 398 . . . . . . . . . . . . . . . 16 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (((𝑐𝑉𝑑𝑉) ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
153152expdimp 445 . . . . . . . . . . . . . . 15 ((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) → (𝑐𝑑 → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
154153adantld 483 . . . . . . . . . . . . . 14 ((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) → ((𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))))
155154imp 398 . . . . . . . . . . . . 13 (((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎))))
156 vex 3418 . . . . . . . . . . . . . 14 𝑐 ∈ V
157 vex 3418 . . . . . . . . . . . . . 14 𝑑 ∈ V
158 vex 3418 . . . . . . . . . . . . . 14 𝑎 ∈ V
159 vex 3418 . . . . . . . . . . . . . 14 𝑏 ∈ V
160156, 157, 158, 159preq12b 4655 . . . . . . . . . . . . 13 ({𝑐, 𝑑} = {𝑎, 𝑏} ↔ ((𝑐 = 𝑎𝑑 = 𝑏) ∨ (𝑐 = 𝑏𝑑 = 𝑎)))
161155, 160syl6ibr 244 . . . . . . . . . . . 12 (((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑)) → ((inf({𝑐, 𝑑}, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅) ∧ sup({𝑐, 𝑑}, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅)) → {𝑐, 𝑑} = {𝑎, 𝑏}))
16226, 161sylbid 232 . . . . . . . . . . 11 (((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑)) → (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ → {𝑐, 𝑑} = {𝑎, 𝑏}))
163 infeq1 8735 . . . . . . . . . . . . . . . . . . . 20 (𝑍 = {𝑐, 𝑑} → inf(𝑍, 𝑉, 𝑅) = inf({𝑐, 𝑑}, 𝑉, 𝑅))
164 supeq1 8704 . . . . . . . . . . . . . . . . . . . 20 (𝑍 = {𝑐, 𝑑} → sup(𝑍, 𝑉, 𝑅) = sup({𝑐, 𝑑}, 𝑉, 𝑅))
165163, 164opeq12d 4685 . . . . . . . . . . . . . . . . . . 19 (𝑍 = {𝑐, 𝑑} → ⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩)
166 infeq1 8735 . . . . . . . . . . . . . . . . . . . 20 (𝑊 = {𝑎, 𝑏} → inf(𝑊, 𝑉, 𝑅) = inf({𝑎, 𝑏}, 𝑉, 𝑅))
167 supeq1 8704 . . . . . . . . . . . . . . . . . . . 20 (𝑊 = {𝑎, 𝑏} → sup(𝑊, 𝑉, 𝑅) = sup({𝑎, 𝑏}, 𝑉, 𝑅))
168166, 167opeq12d 4685 . . . . . . . . . . . . . . . . . . 19 (𝑊 = {𝑎, 𝑏} → ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩)
169165, 168eqeqan12rd 2796 . . . . . . . . . . . . . . . . . 18 ((𝑊 = {𝑎, 𝑏} ∧ 𝑍 = {𝑐, 𝑑}) → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ ↔ ⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩))
170 eqeq12 2791 . . . . . . . . . . . . . . . . . . 19 ((𝑍 = {𝑐, 𝑑} ∧ 𝑊 = {𝑎, 𝑏}) → (𝑍 = 𝑊 ↔ {𝑐, 𝑑} = {𝑎, 𝑏}))
171170ancoms 451 . . . . . . . . . . . . . . . . . 18 ((𝑊 = {𝑎, 𝑏} ∧ 𝑍 = {𝑐, 𝑑}) → (𝑍 = 𝑊 ↔ {𝑐, 𝑑} = {𝑎, 𝑏}))
172169, 171imbi12d 337 . . . . . . . . . . . . . . . . 17 ((𝑊 = {𝑎, 𝑏} ∧ 𝑍 = {𝑐, 𝑑}) → ((⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊) ↔ (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ → {𝑐, 𝑑} = {𝑎, 𝑏})))
173172ex 405 . . . . . . . . . . . . . . . 16 (𝑊 = {𝑎, 𝑏} → (𝑍 = {𝑐, 𝑑} → ((⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊) ↔ (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ → {𝑐, 𝑑} = {𝑎, 𝑏}))))
174173ad2antrl 715 . . . . . . . . . . . . . . 15 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (𝑍 = {𝑐, 𝑑} → ((⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊) ↔ (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ → {𝑐, 𝑑} = {𝑎, 𝑏}))))
175174adantr 473 . . . . . . . . . . . . . 14 ((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) → (𝑍 = {𝑐, 𝑑} → ((⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊) ↔ (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ → {𝑐, 𝑑} = {𝑎, 𝑏}))))
176175com12 32 . . . . . . . . . . . . 13 (𝑍 = {𝑐, 𝑑} → ((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) → ((⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊) ↔ (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ → {𝑐, 𝑑} = {𝑎, 𝑏}))))
177176adantr 473 . . . . . . . . . . . 12 ((𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑) → ((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) → ((⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊) ↔ (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ → {𝑐, 𝑑} = {𝑎, 𝑏}))))
178177impcom 399 . . . . . . . . . . 11 (((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑)) → ((⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊) ↔ (⟨inf({𝑐, 𝑑}, 𝑉, 𝑅), sup({𝑐, 𝑑}, 𝑉, 𝑅)⟩ = ⟨inf({𝑎, 𝑏}, 𝑉, 𝑅), sup({𝑎, 𝑏}, 𝑉, 𝑅)⟩ → {𝑐, 𝑑} = {𝑎, 𝑏})))
179162, 178mpbird 249 . . . . . . . . . 10 (((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) ∧ (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑)) → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊))
180179ex 405 . . . . . . . . 9 ((((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) ∧ (𝑐𝑉𝑑𝑉)) → ((𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑) → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊)))
181180rexlimdvva 3239 . . . . . . . 8 (((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (∃𝑐𝑉𝑑𝑉 (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑) → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊)))
182181ex 405 . . . . . . 7 ((𝑅 Or 𝑉 ∧ (𝑎𝑉𝑏𝑉)) → ((𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (∃𝑐𝑉𝑑𝑉 (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑) → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊))))
183182rexlimdvva 3239 . . . . . 6 (𝑅 Or 𝑉 → (∃𝑎𝑉𝑏𝑉 (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (∃𝑐𝑉𝑑𝑉 (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑) → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊))))
184183com13 88 . . . . 5 (∃𝑐𝑉𝑑𝑉 (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑) → (∃𝑎𝑉𝑏𝑉 (𝑊 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (𝑅 Or 𝑉 → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊))))
18519, 184syl5bi 234 . . . 4 (∃𝑐𝑉𝑑𝑉 (𝑍 = {𝑐, 𝑑} ∧ 𝑐𝑑) → (𝑊𝑃 → (𝑅 Or 𝑉 → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊))))
18618, 185sylbi 209 . . 3 (𝑍𝑃 → (𝑊𝑃 → (𝑅 Or 𝑉 → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊))))
1871863imp31 1092 . 2 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → (⟨inf(𝑍, 𝑉, 𝑅), sup(𝑍, 𝑉, 𝑅)⟩ = ⟨inf(𝑊, 𝑉, 𝑅), sup(𝑊, 𝑉, 𝑅)⟩ → 𝑍 = 𝑊))
18816, 187sylbid 232 1 ((𝑅 Or 𝑉𝑊𝑃𝑍𝑃) → ((𝐹𝑍) = (𝐹𝑊) → 𝑍 = 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833  w3o 1067  w3a 1068   = wceq 1507  wcel 2050  wne 2967  wrex 3089  {crab 3092  Vcvv 3415  cin 3828  ifcif 4350  𝒫 cpw 4422  {cpr 4443  cop 4447   class class class wbr 4929  cmpt 5008   Or wor 5325   × cxp 5405  cfv 6188  supcsup 8699  infcinf 8700  2c2 11495  chash 13505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-sup 8701  df-inf 8702  df-dju 9124  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-2 11503  df-n0 11708  df-z 11794  df-uz 12059  df-fz 12709  df-hash 13506
This theorem is referenced by:  prproropf1o  43043
  Copyright terms: Public domain W3C validator