Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resum2sqorgt0 Structured version   Visualization version   GIF version

Theorem resum2sqorgt0 45123
Description: The sum of the square of two real numbers is greater than zero if at least one of the real numbers is nonzero. (Contributed by AV, 26-Feb-2023.)
Hypothesis
Ref Expression
resum2sqcl.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
Assertion
Ref Expression
resum2sqorgt0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < 𝑄)

Proof of Theorem resum2sqorgt0
StepHypRef Expression
1 resum2sqcl.q . . . . . . 7 𝑄 = ((𝐴↑2) + (𝐵↑2))
21resum2sqgt0 45121 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 0 < 𝑄)
32ex 416 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐵 ∈ ℝ → 0 < 𝑄))
43expcom 417 . . . 4 (𝐴 ≠ 0 → (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → 0 < 𝑄)))
54com23 86 . . 3 (𝐴 ≠ 0 → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → 0 < 𝑄)))
6 eqid 2798 . . . . . . 7 ((𝐵↑2) + (𝐴↑2)) = ((𝐵↑2) + (𝐴↑2))
76resum2sqgt0 45121 . . . . . 6 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → 0 < ((𝐵↑2) + (𝐴↑2)))
81breq2i 5038 . . . . . . 7 (0 < 𝑄 ↔ 0 < ((𝐴↑2) + (𝐵↑2)))
9 resqcl 13486 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ)
109adantl 485 . . . . . . . . . 10 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐴↑2) ∈ ℝ)
1110recnd 10658 . . . . . . . . 9 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐴↑2) ∈ ℂ)
12 resqcl 13486 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐵↑2) ∈ ℝ)
1312ad2antrr 725 . . . . . . . . . 10 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐵↑2) ∈ ℝ)
1413recnd 10658 . . . . . . . . 9 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐵↑2) ∈ ℂ)
1511, 14addcomd 10831 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → ((𝐴↑2) + (𝐵↑2)) = ((𝐵↑2) + (𝐴↑2)))
1615breq2d 5042 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (0 < ((𝐴↑2) + (𝐵↑2)) ↔ 0 < ((𝐵↑2) + (𝐴↑2))))
178, 16syl5bb 286 . . . . . 6 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (0 < 𝑄 ↔ 0 < ((𝐵↑2) + (𝐴↑2))))
187, 17mpbird 260 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → 0 < 𝑄)
1918ex 416 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℝ → 0 < 𝑄))
2019expcom 417 . . 3 (𝐵 ≠ 0 → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → 0 < 𝑄)))
215, 20jaoi 854 . 2 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → 0 < 𝑄)))
22213imp31 1109 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  (class class class)co 7135  cr 10525  0cc0 10526   + caddc 10529   < clt 10664  2c2 11680  cexp 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-exp 13426
This theorem is referenced by:  itsclc0xyqsolr  45183  itsclinecirc0in  45189  inlinecirc02plem  45200
  Copyright terms: Public domain W3C validator