Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resum2sqorgt0 Structured version   Visualization version   GIF version

Theorem resum2sqorgt0 46055
Description: The sum of the square of two real numbers is greater than zero if at least one of the real numbers is nonzero. (Contributed by AV, 26-Feb-2023.)
Hypothesis
Ref Expression
resum2sqcl.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
Assertion
Ref Expression
resum2sqorgt0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < 𝑄)

Proof of Theorem resum2sqorgt0
StepHypRef Expression
1 resum2sqcl.q . . . . . . 7 𝑄 = ((𝐴↑2) + (𝐵↑2))
21resum2sqgt0 46053 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 0 < 𝑄)
32ex 413 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐵 ∈ ℝ → 0 < 𝑄))
43expcom 414 . . . 4 (𝐴 ≠ 0 → (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → 0 < 𝑄)))
54com23 86 . . 3 (𝐴 ≠ 0 → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → 0 < 𝑄)))
6 eqid 2738 . . . . . . 7 ((𝐵↑2) + (𝐴↑2)) = ((𝐵↑2) + (𝐴↑2))
76resum2sqgt0 46053 . . . . . 6 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → 0 < ((𝐵↑2) + (𝐴↑2)))
81breq2i 5082 . . . . . . 7 (0 < 𝑄 ↔ 0 < ((𝐴↑2) + (𝐵↑2)))
9 resqcl 13844 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ)
109adantl 482 . . . . . . . . . 10 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐴↑2) ∈ ℝ)
1110recnd 11003 . . . . . . . . 9 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐴↑2) ∈ ℂ)
12 resqcl 13844 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐵↑2) ∈ ℝ)
1312ad2antrr 723 . . . . . . . . . 10 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐵↑2) ∈ ℝ)
1413recnd 11003 . . . . . . . . 9 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐵↑2) ∈ ℂ)
1511, 14addcomd 11177 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → ((𝐴↑2) + (𝐵↑2)) = ((𝐵↑2) + (𝐴↑2)))
1615breq2d 5086 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (0 < ((𝐴↑2) + (𝐵↑2)) ↔ 0 < ((𝐵↑2) + (𝐴↑2))))
178, 16syl5bb 283 . . . . . 6 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (0 < 𝑄 ↔ 0 < ((𝐵↑2) + (𝐴↑2))))
187, 17mpbird 256 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → 0 < 𝑄)
1918ex 413 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℝ → 0 < 𝑄))
2019expcom 414 . . 3 (𝐵 ≠ 0 → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → 0 < 𝑄)))
215, 20jaoi 854 . 2 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → 0 < 𝑄)))
22213imp31 1111 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871   + caddc 10874   < clt 11009  2c2 12028  cexp 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-exp 13783
This theorem is referenced by:  itsclc0xyqsolr  46115  itsclinecirc0in  46121  inlinecirc02plem  46132
  Copyright terms: Public domain W3C validator