Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > resum2sqorgt0 | Structured version Visualization version GIF version |
Description: The sum of the square of two real numbers is greater than zero if at least one of the real numbers is nonzero. (Contributed by AV, 26-Feb-2023.) |
Ref | Expression |
---|---|
resum2sqcl.q | ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) |
Ref | Expression |
---|---|
resum2sqorgt0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resum2sqcl.q | . . . . . . 7 ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) | |
2 | 1 | resum2sqgt0 45754 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 0 < 𝑄) |
3 | 2 | ex 416 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐵 ∈ ℝ → 0 < 𝑄)) |
4 | 3 | expcom 417 | . . . 4 ⊢ (𝐴 ≠ 0 → (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → 0 < 𝑄))) |
5 | 4 | com23 86 | . . 3 ⊢ (𝐴 ≠ 0 → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → 0 < 𝑄))) |
6 | eqid 2738 | . . . . . . 7 ⊢ ((𝐵↑2) + (𝐴↑2)) = ((𝐵↑2) + (𝐴↑2)) | |
7 | 6 | resum2sqgt0 45754 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → 0 < ((𝐵↑2) + (𝐴↑2))) |
8 | 1 | breq2i 5075 | . . . . . . 7 ⊢ (0 < 𝑄 ↔ 0 < ((𝐴↑2) + (𝐵↑2))) |
9 | resqcl 13720 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ) | |
10 | 9 | adantl 485 | . . . . . . . . . 10 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐴↑2) ∈ ℝ) |
11 | 10 | recnd 10885 | . . . . . . . . 9 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐴↑2) ∈ ℂ) |
12 | resqcl 13720 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ → (𝐵↑2) ∈ ℝ) | |
13 | 12 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐵↑2) ∈ ℝ) |
14 | 13 | recnd 10885 | . . . . . . . . 9 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐵↑2) ∈ ℂ) |
15 | 11, 14 | addcomd 11058 | . . . . . . . 8 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → ((𝐴↑2) + (𝐵↑2)) = ((𝐵↑2) + (𝐴↑2))) |
16 | 15 | breq2d 5079 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (0 < ((𝐴↑2) + (𝐵↑2)) ↔ 0 < ((𝐵↑2) + (𝐴↑2)))) |
17 | 8, 16 | syl5bb 286 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (0 < 𝑄 ↔ 0 < ((𝐵↑2) + (𝐴↑2)))) |
18 | 7, 17 | mpbird 260 | . . . . 5 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → 0 < 𝑄) |
19 | 18 | ex 416 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℝ → 0 < 𝑄)) |
20 | 19 | expcom 417 | . . 3 ⊢ (𝐵 ≠ 0 → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → 0 < 𝑄))) |
21 | 5, 20 | jaoi 857 | . 2 ⊢ ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → 0 < 𝑄))) |
22 | 21 | 3imp31 1114 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 847 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 class class class wbr 5067 (class class class)co 7231 ℝcr 10752 0cc0 10753 + caddc 10756 < clt 10891 2c2 11909 ↑cexp 13659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-iun 4920 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-2nd 7780 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-er 8411 df-en 8647 df-dom 8648 df-sdom 8649 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-nn 11855 df-2 11917 df-n0 12115 df-z 12201 df-uz 12463 df-seq 13599 df-exp 13660 |
This theorem is referenced by: itsclc0xyqsolr 45816 itsclinecirc0in 45822 inlinecirc02plem 45833 |
Copyright terms: Public domain | W3C validator |