![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resum2sqorgt0 | Structured version Visualization version GIF version |
Description: The sum of the square of two real numbers is greater than zero if at least one of the real numbers is nonzero. (Contributed by AV, 26-Feb-2023.) |
Ref | Expression |
---|---|
resum2sqcl.q | ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) |
Ref | Expression |
---|---|
resum2sqorgt0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resum2sqcl.q | . . . . . . 7 ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) | |
2 | 1 | resum2sqgt0 47703 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 0 < 𝑄) |
3 | 2 | ex 412 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐵 ∈ ℝ → 0 < 𝑄)) |
4 | 3 | expcom 413 | . . . 4 ⊢ (𝐴 ≠ 0 → (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → 0 < 𝑄))) |
5 | 4 | com23 86 | . . 3 ⊢ (𝐴 ≠ 0 → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → 0 < 𝑄))) |
6 | eqid 2727 | . . . . . . 7 ⊢ ((𝐵↑2) + (𝐴↑2)) = ((𝐵↑2) + (𝐴↑2)) | |
7 | 6 | resum2sqgt0 47703 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → 0 < ((𝐵↑2) + (𝐴↑2))) |
8 | 1 | breq2i 5150 | . . . . . . 7 ⊢ (0 < 𝑄 ↔ 0 < ((𝐴↑2) + (𝐵↑2))) |
9 | resqcl 14112 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ) | |
10 | 9 | adantl 481 | . . . . . . . . . 10 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐴↑2) ∈ ℝ) |
11 | 10 | recnd 11264 | . . . . . . . . 9 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐴↑2) ∈ ℂ) |
12 | resqcl 14112 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ → (𝐵↑2) ∈ ℝ) | |
13 | 12 | ad2antrr 725 | . . . . . . . . . 10 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐵↑2) ∈ ℝ) |
14 | 13 | recnd 11264 | . . . . . . . . 9 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐵↑2) ∈ ℂ) |
15 | 11, 14 | addcomd 11438 | . . . . . . . 8 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → ((𝐴↑2) + (𝐵↑2)) = ((𝐵↑2) + (𝐴↑2))) |
16 | 15 | breq2d 5154 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (0 < ((𝐴↑2) + (𝐵↑2)) ↔ 0 < ((𝐵↑2) + (𝐴↑2)))) |
17 | 8, 16 | bitrid 283 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (0 < 𝑄 ↔ 0 < ((𝐵↑2) + (𝐴↑2)))) |
18 | 7, 17 | mpbird 257 | . . . . 5 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → 0 < 𝑄) |
19 | 18 | ex 412 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℝ → 0 < 𝑄)) |
20 | 19 | expcom 413 | . . 3 ⊢ (𝐵 ≠ 0 → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → 0 < 𝑄))) |
21 | 5, 20 | jaoi 856 | . 2 ⊢ ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → 0 < 𝑄))) |
22 | 21 | 3imp31 1110 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 class class class wbr 5142 (class class class)co 7414 ℝcr 11129 0cc0 11130 + caddc 11133 < clt 11270 2c2 12289 ↑cexp 14050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-n0 12495 df-z 12581 df-uz 12845 df-seq 13991 df-exp 14051 |
This theorem is referenced by: itsclc0xyqsolr 47765 itsclinecirc0in 47771 inlinecirc02plem 47782 |
Copyright terms: Public domain | W3C validator |