| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resum2sqorgt0 | Structured version Visualization version GIF version | ||
| Description: The sum of the square of two real numbers is greater than zero if at least one of the real numbers is nonzero. (Contributed by AV, 26-Feb-2023.) |
| Ref | Expression |
|---|---|
| resum2sqcl.q | ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) |
| Ref | Expression |
|---|---|
| resum2sqorgt0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resum2sqcl.q | . . . . . . 7 ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) | |
| 2 | 1 | resum2sqgt0 48693 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 0 < 𝑄) |
| 3 | 2 | ex 412 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐵 ∈ ℝ → 0 < 𝑄)) |
| 4 | 3 | expcom 413 | . . . 4 ⊢ (𝐴 ≠ 0 → (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → 0 < 𝑄))) |
| 5 | 4 | com23 86 | . . 3 ⊢ (𝐴 ≠ 0 → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → 0 < 𝑄))) |
| 6 | eqid 2729 | . . . . . . 7 ⊢ ((𝐵↑2) + (𝐴↑2)) = ((𝐵↑2) + (𝐴↑2)) | |
| 7 | 6 | resum2sqgt0 48693 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → 0 < ((𝐵↑2) + (𝐴↑2))) |
| 8 | 1 | breq2i 5115 | . . . . . . 7 ⊢ (0 < 𝑄 ↔ 0 < ((𝐴↑2) + (𝐵↑2))) |
| 9 | resqcl 14089 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ) | |
| 10 | 9 | adantl 481 | . . . . . . . . . 10 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐴↑2) ∈ ℝ) |
| 11 | 10 | recnd 11202 | . . . . . . . . 9 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐴↑2) ∈ ℂ) |
| 12 | resqcl 14089 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ → (𝐵↑2) ∈ ℝ) | |
| 13 | 12 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐵↑2) ∈ ℝ) |
| 14 | 13 | recnd 11202 | . . . . . . . . 9 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝐵↑2) ∈ ℂ) |
| 15 | 11, 14 | addcomd 11376 | . . . . . . . 8 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → ((𝐴↑2) + (𝐵↑2)) = ((𝐵↑2) + (𝐴↑2))) |
| 16 | 15 | breq2d 5119 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (0 < ((𝐴↑2) + (𝐵↑2)) ↔ 0 < ((𝐵↑2) + (𝐴↑2)))) |
| 17 | 8, 16 | bitrid 283 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → (0 < 𝑄 ↔ 0 < ((𝐵↑2) + (𝐴↑2)))) |
| 18 | 7, 17 | mpbird 257 | . . . . 5 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → 0 < 𝑄) |
| 19 | 18 | ex 412 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℝ → 0 < 𝑄)) |
| 20 | 19 | expcom 413 | . . 3 ⊢ (𝐵 ≠ 0 → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → 0 < 𝑄))) |
| 21 | 5, 20 | jaoi 857 | . 2 ⊢ ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → 0 < 𝑄))) |
| 22 | 21 | 3imp31 1111 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < 𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 + caddc 11071 < clt 11208 2c2 12241 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: itsclc0xyqsolr 48755 itsclinecirc0in 48761 inlinecirc02plem 48772 |
| Copyright terms: Public domain | W3C validator |