Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpxpmin Structured version   Visualization version   GIF version

Theorem relexpxpmin 41325
Description: The composition of powers of a Cartesian product of non-disjoint sets is the Cartesian product raised to the minimum exponent. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
relexpxpmin (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ 𝐽 ∈ ℕ0𝐾 ∈ ℕ0)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))

Proof of Theorem relexpxpmin
StepHypRef Expression
1 elnn0 12235 . . . 4 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
2 elnn0 12235 . . . . . 6 (𝐽 ∈ ℕ0 ↔ (𝐽 ∈ ℕ ∨ 𝐽 = 0))
3 ifeqor 4510 . . . . . . . . . 10 (if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽 ∨ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)
4 andi 1005 . . . . . . . . . . 11 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ (if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽 ∨ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)) ↔ ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)))
54biimpi 215 . . . . . . . . . 10 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ (if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽 ∨ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)) → ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)))
63, 5mpan2 688 . . . . . . . . 9 (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)))
7 eqtr 2761 . . . . . . . . . 10 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) → 𝐼 = 𝐽)
8 eqtr 2761 . . . . . . . . . 10 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾) → 𝐼 = 𝐾)
97, 8orim12i 906 . . . . . . . . 9 (((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)) → (𝐼 = 𝐽𝐼 = 𝐾))
10 relexpxpnnidm 41311 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝐾) = (𝐴 × 𝐵)))
1110imp 407 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐾) = (𝐴 × 𝐵))
12113ad2antl3 1186 . . . . . . . . . . . 12 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐾) = (𝐴 × 𝐵))
13 relexpxpnnidm 41311 . . . . . . . . . . . . . . 15 (𝐽 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵)))
1413imp 407 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵))
15143ad2antl2 1185 . . . . . . . . . . . . 13 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵))
1615oveq1d 7290 . . . . . . . . . . . 12 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐾))
17 simpl1 1190 . . . . . . . . . . . . . 14 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 𝐽)
1817oveq2d 7291 . . . . . . . . . . . . 13 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟𝐽))
1918, 15eqtrd 2778 . . . . . . . . . . . 12 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = (𝐴 × 𝐵))
2012, 16, 193eqtr4d 2788 . . . . . . . . . . 11 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
21203exp1 1351 . . . . . . . . . 10 (𝐼 = 𝐽 → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
22143ad2antl2 1185 . . . . . . . . . . . 12 (((𝐼 = 𝐾𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵))
23 simpl1 1190 . . . . . . . . . . . . 13 (((𝐼 = 𝐾𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 𝐾)
2423eqcomd 2744 . . . . . . . . . . . 12 (((𝐼 = 𝐾𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 = 𝐼)
2522, 24oveq12d 7293 . . . . . . . . . . 11 (((𝐼 = 𝐾𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
26253exp1 1351 . . . . . . . . . 10 (𝐼 = 𝐾 → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
2721, 26jaoi 854 . . . . . . . . 9 ((𝐼 = 𝐽𝐼 = 𝐾) → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
286, 9, 273syl 18 . . . . . . . 8 (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
2928com13 88 . . . . . . 7 (𝐾 ∈ ℕ → (𝐽 ∈ ℕ → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
30 simp3 1137 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
31 simp2 1136 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐽 = 0)
32 simp1 1135 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐾 ∈ ℕ)
3332nngt0d 12022 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 0 < 𝐾)
3431, 33eqbrtrd 5096 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐽 < 𝐾)
3534iftrued 4467 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽)
3630, 35, 313eqtrd 2782 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = 0)
37 simpr1 1193 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐴𝑈)
38 simpr2 1194 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐵𝑉)
3937, 38xpexd 7601 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (𝐴 × 𝐵) ∈ V)
40 dmexg 7750 . . . . . . . . . . . . . 14 ((𝐴 × 𝐵) ∈ V → dom (𝐴 × 𝐵) ∈ V)
41 rnexg 7751 . . . . . . . . . . . . . 14 ((𝐴 × 𝐵) ∈ V → ran (𝐴 × 𝐵) ∈ V)
4240, 41jca 512 . . . . . . . . . . . . 13 ((𝐴 × 𝐵) ∈ V → (dom (𝐴 × 𝐵) ∈ V ∧ ran (𝐴 × 𝐵) ∈ V))
43 unexg 7599 . . . . . . . . . . . . 13 ((dom (𝐴 × 𝐵) ∈ V ∧ ran (𝐴 × 𝐵) ∈ V) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) ∈ V)
4439, 42, 433syl 18 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) ∈ V)
45 simpl1 1190 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 ∈ ℕ)
4645nnnn0d 12293 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 ∈ ℕ0)
47 relexpiidm 41312 . . . . . . . . . . . 12 (((dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) ∈ V ∧ 𝐾 ∈ ℕ0) → (( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))↑𝑟𝐾) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
4844, 46, 47syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))↑𝑟𝐾) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
49 simpl2 1191 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐽 = 0)
5049oveq2d 7291 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = ((𝐴 × 𝐵)↑𝑟0))
51 relexp0g 14733 . . . . . . . . . . . . . 14 ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵)↑𝑟0) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
5239, 51syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟0) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
5350, 52eqtrd 2778 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
5453oveq1d 7290 . . . . . . . . . . 11 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = (( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))↑𝑟𝐾))
55 simpl3 1192 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 0)
5655oveq2d 7291 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟0))
5756, 52eqtrd 2778 . . . . . . . . . . 11 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
5848, 54, 573eqtr4d 2788 . . . . . . . . . 10 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
5958ex 413 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))
6036, 59syld3an3 1408 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))
61603exp 1118 . . . . . . 7 (𝐾 ∈ ℕ → (𝐽 = 0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
6229, 61jaod 856 . . . . . 6 (𝐾 ∈ ℕ → ((𝐽 ∈ ℕ ∨ 𝐽 = 0) → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
632, 62syl5bi 241 . . . . 5 (𝐾 ∈ ℕ → (𝐽 ∈ ℕ0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
64 simp1 1135 . . . . . . 7 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐾 = 0)
652biimpi 215 . . . . . . . 8 (𝐽 ∈ ℕ0 → (𝐽 ∈ ℕ ∨ 𝐽 = 0))
66653ad2ant2 1133 . . . . . . 7 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → (𝐽 ∈ ℕ ∨ 𝐽 = 0))
67 simp3 1137 . . . . . . . 8 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
68 nn0nlt0 12259 . . . . . . . . . . 11 (𝐽 ∈ ℕ0 → ¬ 𝐽 < 0)
69683ad2ant2 1133 . . . . . . . . . 10 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ¬ 𝐽 < 0)
7064breq2d 5086 . . . . . . . . . 10 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → (𝐽 < 𝐾𝐽 < 0))
7169, 70mtbird 325 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ¬ 𝐽 < 𝐾)
7271iffalsed 4470 . . . . . . . 8 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)
7367, 72, 643eqtrd 2782 . . . . . . 7 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = 0)
74133ad2ant2 1133 . . . . . . . . . . . 12 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵)))
7574imp 407 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵))
7675oveq1d 7290 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟0) = ((𝐴 × 𝐵)↑𝑟0))
77 simpl1 1190 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 = 0)
7877oveq2d 7291 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟0))
79 simpl3 1192 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 0)
8079oveq2d 7291 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟0))
8176, 78, 803eqtr4d 2788 . . . . . . . . 9 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
82813exp1 1351 . . . . . . . 8 (𝐾 = 0 → (𝐽 ∈ ℕ → (𝐼 = 0 → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
83 simpr1 1193 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐴𝑈)
84 simpr2 1194 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐵𝑉)
8583, 84xpexd 7601 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (𝐴 × 𝐵) ∈ V)
86 relexp0idm 41323 . . . . . . . . . . 11 ((𝐴 × 𝐵) ∈ V → (((𝐴 × 𝐵)↑𝑟0)↑𝑟0) = ((𝐴 × 𝐵)↑𝑟0))
8785, 86syl 17 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟0)↑𝑟0) = ((𝐴 × 𝐵)↑𝑟0))
88 simpl2 1191 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐽 = 0)
8988oveq2d 7291 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = ((𝐴 × 𝐵)↑𝑟0))
90 simpl1 1190 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 = 0)
9189, 90oveq12d 7293 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = (((𝐴 × 𝐵)↑𝑟0)↑𝑟0))
92 simpl3 1192 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 0)
9392oveq2d 7291 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟0))
9487, 91, 933eqtr4d 2788 . . . . . . . . 9 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
95943exp1 1351 . . . . . . . 8 (𝐾 = 0 → (𝐽 = 0 → (𝐼 = 0 → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
9682, 95jaod 856 . . . . . . 7 (𝐾 = 0 → ((𝐽 ∈ ℕ ∨ 𝐽 = 0) → (𝐼 = 0 → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
9764, 66, 73, 96syl3c 66 . . . . . 6 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))
98973exp 1118 . . . . 5 (𝐾 = 0 → (𝐽 ∈ ℕ0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
9963, 98jaoi 854 . . . 4 ((𝐾 ∈ ℕ ∨ 𝐾 = 0) → (𝐽 ∈ ℕ0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
1001, 99sylbi 216 . . 3 (𝐾 ∈ ℕ0 → (𝐽 ∈ ℕ0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
1011003imp31 1111 . 2 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ 𝐽 ∈ ℕ0𝐾 ∈ ℕ0) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))
102101impcom 408 1 (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ 𝐽 ∈ ℕ0𝐾 ∈ ℕ0)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cun 3885  cin 3886  c0 4256  ifcif 4459   class class class wbr 5074   I cid 5488   × cxp 5587  dom cdm 5589  ran crn 5590  cres 5591  (class class class)co 7275  0cc0 10871   < clt 11009  cn 11973  0cn0 12233  𝑟crelexp 14730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-relexp 14731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator