Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpxpmin Structured version   Visualization version   GIF version

Theorem relexpxpmin 43208
Description: The composition of powers of a Cartesian product of non-disjoint sets is the Cartesian product raised to the minimum exponent. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
relexpxpmin (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ 𝐽 ∈ ℕ0𝐾 ∈ ℕ0)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))

Proof of Theorem relexpxpmin
StepHypRef Expression
1 elnn0 12499 . . . 4 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
2 elnn0 12499 . . . . . 6 (𝐽 ∈ ℕ0 ↔ (𝐽 ∈ ℕ ∨ 𝐽 = 0))
3 ifeqor 4576 . . . . . . . . . 10 (if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽 ∨ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)
4 andi 1005 . . . . . . . . . . 11 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ (if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽 ∨ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)) ↔ ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)))
54biimpi 215 . . . . . . . . . 10 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ (if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽 ∨ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)) → ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)))
63, 5mpan2 689 . . . . . . . . 9 (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)))
7 eqtr 2748 . . . . . . . . . 10 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) → 𝐼 = 𝐽)
8 eqtr 2748 . . . . . . . . . 10 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾) → 𝐼 = 𝐾)
97, 8orim12i 906 . . . . . . . . 9 (((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)) → (𝐼 = 𝐽𝐼 = 𝐾))
10 relexpxpnnidm 43194 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝐾) = (𝐴 × 𝐵)))
1110imp 405 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐾) = (𝐴 × 𝐵))
12113ad2antl3 1184 . . . . . . . . . . . 12 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐾) = (𝐴 × 𝐵))
13 relexpxpnnidm 43194 . . . . . . . . . . . . . . 15 (𝐽 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵)))
1413imp 405 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵))
15143ad2antl2 1183 . . . . . . . . . . . . 13 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵))
1615oveq1d 7428 . . . . . . . . . . . 12 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐾))
17 simpl1 1188 . . . . . . . . . . . . . 14 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 𝐽)
1817oveq2d 7429 . . . . . . . . . . . . 13 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟𝐽))
1918, 15eqtrd 2765 . . . . . . . . . . . 12 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = (𝐴 × 𝐵))
2012, 16, 193eqtr4d 2775 . . . . . . . . . . 11 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
21203exp1 1349 . . . . . . . . . 10 (𝐼 = 𝐽 → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
22143ad2antl2 1183 . . . . . . . . . . . 12 (((𝐼 = 𝐾𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵))
23 simpl1 1188 . . . . . . . . . . . . 13 (((𝐼 = 𝐾𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 𝐾)
2423eqcomd 2731 . . . . . . . . . . . 12 (((𝐼 = 𝐾𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 = 𝐼)
2522, 24oveq12d 7431 . . . . . . . . . . 11 (((𝐼 = 𝐾𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
26253exp1 1349 . . . . . . . . . 10 (𝐼 = 𝐾 → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
2721, 26jaoi 855 . . . . . . . . 9 ((𝐼 = 𝐽𝐼 = 𝐾) → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
286, 9, 273syl 18 . . . . . . . 8 (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
2928com13 88 . . . . . . 7 (𝐾 ∈ ℕ → (𝐽 ∈ ℕ → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
30 simp3 1135 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
31 simp2 1134 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐽 = 0)
32 simp1 1133 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐾 ∈ ℕ)
3332nngt0d 12286 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 0 < 𝐾)
3431, 33eqbrtrd 5166 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐽 < 𝐾)
3534iftrued 4533 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽)
3630, 35, 313eqtrd 2769 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = 0)
37 simpr1 1191 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐴𝑈)
38 simpr2 1192 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐵𝑉)
3937, 38xpexd 7748 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (𝐴 × 𝐵) ∈ V)
40 dmexg 7903 . . . . . . . . . . . . . 14 ((𝐴 × 𝐵) ∈ V → dom (𝐴 × 𝐵) ∈ V)
41 rnexg 7904 . . . . . . . . . . . . . 14 ((𝐴 × 𝐵) ∈ V → ran (𝐴 × 𝐵) ∈ V)
4240, 41jca 510 . . . . . . . . . . . . 13 ((𝐴 × 𝐵) ∈ V → (dom (𝐴 × 𝐵) ∈ V ∧ ran (𝐴 × 𝐵) ∈ V))
43 unexg 7746 . . . . . . . . . . . . 13 ((dom (𝐴 × 𝐵) ∈ V ∧ ran (𝐴 × 𝐵) ∈ V) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) ∈ V)
4439, 42, 433syl 18 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) ∈ V)
45 simpl1 1188 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 ∈ ℕ)
4645nnnn0d 12557 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 ∈ ℕ0)
47 relexpiidm 43195 . . . . . . . . . . . 12 (((dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) ∈ V ∧ 𝐾 ∈ ℕ0) → (( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))↑𝑟𝐾) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
4844, 46, 47syl2anc 582 . . . . . . . . . . 11 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))↑𝑟𝐾) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
49 simpl2 1189 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐽 = 0)
5049oveq2d 7429 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = ((𝐴 × 𝐵)↑𝑟0))
51 relexp0g 14996 . . . . . . . . . . . . . 14 ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵)↑𝑟0) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
5239, 51syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟0) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
5350, 52eqtrd 2765 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
5453oveq1d 7428 . . . . . . . . . . 11 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = (( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))↑𝑟𝐾))
55 simpl3 1190 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 0)
5655oveq2d 7429 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟0))
5756, 52eqtrd 2765 . . . . . . . . . . 11 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
5848, 54, 573eqtr4d 2775 . . . . . . . . . 10 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
5958ex 411 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))
6036, 59syld3an3 1406 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))
61603exp 1116 . . . . . . 7 (𝐾 ∈ ℕ → (𝐽 = 0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
6229, 61jaod 857 . . . . . 6 (𝐾 ∈ ℕ → ((𝐽 ∈ ℕ ∨ 𝐽 = 0) → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
632, 62biimtrid 241 . . . . 5 (𝐾 ∈ ℕ → (𝐽 ∈ ℕ0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
64 simp1 1133 . . . . . . 7 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐾 = 0)
652biimpi 215 . . . . . . . 8 (𝐽 ∈ ℕ0 → (𝐽 ∈ ℕ ∨ 𝐽 = 0))
66653ad2ant2 1131 . . . . . . 7 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → (𝐽 ∈ ℕ ∨ 𝐽 = 0))
67 simp3 1135 . . . . . . . 8 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
68 nn0nlt0 12523 . . . . . . . . . . 11 (𝐽 ∈ ℕ0 → ¬ 𝐽 < 0)
69683ad2ant2 1131 . . . . . . . . . 10 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ¬ 𝐽 < 0)
7064breq2d 5156 . . . . . . . . . 10 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → (𝐽 < 𝐾𝐽 < 0))
7169, 70mtbird 324 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ¬ 𝐽 < 𝐾)
7271iffalsed 4536 . . . . . . . 8 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)
7367, 72, 643eqtrd 2769 . . . . . . 7 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = 0)
74133ad2ant2 1131 . . . . . . . . . . . 12 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵)))
7574imp 405 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵))
7675oveq1d 7428 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟0) = ((𝐴 × 𝐵)↑𝑟0))
77 simpl1 1188 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 = 0)
7877oveq2d 7429 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟0))
79 simpl3 1190 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 0)
8079oveq2d 7429 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟0))
8176, 78, 803eqtr4d 2775 . . . . . . . . 9 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
82813exp1 1349 . . . . . . . 8 (𝐾 = 0 → (𝐽 ∈ ℕ → (𝐼 = 0 → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
83 simpr1 1191 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐴𝑈)
84 simpr2 1192 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐵𝑉)
8583, 84xpexd 7748 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (𝐴 × 𝐵) ∈ V)
86 relexp0idm 43206 . . . . . . . . . . 11 ((𝐴 × 𝐵) ∈ V → (((𝐴 × 𝐵)↑𝑟0)↑𝑟0) = ((𝐴 × 𝐵)↑𝑟0))
8785, 86syl 17 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟0)↑𝑟0) = ((𝐴 × 𝐵)↑𝑟0))
88 simpl2 1189 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐽 = 0)
8988oveq2d 7429 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = ((𝐴 × 𝐵)↑𝑟0))
90 simpl1 1188 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 = 0)
9189, 90oveq12d 7431 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = (((𝐴 × 𝐵)↑𝑟0)↑𝑟0))
92 simpl3 1190 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 0)
9392oveq2d 7429 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟0))
9487, 91, 933eqtr4d 2775 . . . . . . . . 9 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
95943exp1 1349 . . . . . . . 8 (𝐾 = 0 → (𝐽 = 0 → (𝐼 = 0 → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
9682, 95jaod 857 . . . . . . 7 (𝐾 = 0 → ((𝐽 ∈ ℕ ∨ 𝐽 = 0) → (𝐼 = 0 → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
9764, 66, 73, 96syl3c 66 . . . . . 6 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))
98973exp 1116 . . . . 5 (𝐾 = 0 → (𝐽 ∈ ℕ0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
9963, 98jaoi 855 . . . 4 ((𝐾 ∈ ℕ ∨ 𝐾 = 0) → (𝐽 ∈ ℕ0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
1001, 99sylbi 216 . . 3 (𝐾 ∈ ℕ0 → (𝐽 ∈ ℕ0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
1011003imp31 1109 . 2 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ 𝐽 ∈ ℕ0𝐾 ∈ ℕ0) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))
102101impcom 406 1 (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ 𝐽 ∈ ℕ0𝐾 ∈ ℕ0)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wne 2930  Vcvv 3463  cun 3939  cin 3940  c0 4319  ifcif 4525   class class class wbr 5144   I cid 5570   × cxp 5671  dom cdm 5673  ran crn 5674  cres 5675  (class class class)co 7413  0cc0 11133   < clt 11273  cn 12237  0cn0 12497  𝑟crelexp 14993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-n0 12498  df-z 12584  df-uz 12848  df-seq 13994  df-relexp 14994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator