Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpxpmin Structured version   Visualization version   GIF version

Theorem relexpxpmin 43713
Description: The composition of powers of a Cartesian product of non-disjoint sets is the Cartesian product raised to the minimum exponent. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
relexpxpmin (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ 𝐽 ∈ ℕ0𝐾 ∈ ℕ0)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))

Proof of Theorem relexpxpmin
StepHypRef Expression
1 elnn0 12451 . . . 4 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
2 elnn0 12451 . . . . . 6 (𝐽 ∈ ℕ0 ↔ (𝐽 ∈ ℕ ∨ 𝐽 = 0))
3 ifeqor 4543 . . . . . . . . . 10 (if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽 ∨ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)
4 andi 1009 . . . . . . . . . . 11 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ (if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽 ∨ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)) ↔ ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)))
54biimpi 216 . . . . . . . . . 10 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ (if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽 ∨ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)) → ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)))
63, 5mpan2 691 . . . . . . . . 9 (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)))
7 eqtr 2750 . . . . . . . . . 10 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) → 𝐼 = 𝐽)
8 eqtr 2750 . . . . . . . . . 10 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾) → 𝐼 = 𝐾)
97, 8orim12i 908 . . . . . . . . 9 (((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)) → (𝐼 = 𝐽𝐼 = 𝐾))
10 relexpxpnnidm 43699 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝐾) = (𝐴 × 𝐵)))
1110imp 406 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐾) = (𝐴 × 𝐵))
12113ad2antl3 1188 . . . . . . . . . . . 12 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐾) = (𝐴 × 𝐵))
13 relexpxpnnidm 43699 . . . . . . . . . . . . . . 15 (𝐽 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵)))
1413imp 406 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵))
15143ad2antl2 1187 . . . . . . . . . . . . 13 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵))
1615oveq1d 7405 . . . . . . . . . . . 12 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐾))
17 simpl1 1192 . . . . . . . . . . . . . 14 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 𝐽)
1817oveq2d 7406 . . . . . . . . . . . . 13 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟𝐽))
1918, 15eqtrd 2765 . . . . . . . . . . . 12 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = (𝐴 × 𝐵))
2012, 16, 193eqtr4d 2775 . . . . . . . . . . 11 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
21203exp1 1353 . . . . . . . . . 10 (𝐼 = 𝐽 → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
22143ad2antl2 1187 . . . . . . . . . . . 12 (((𝐼 = 𝐾𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵))
23 simpl1 1192 . . . . . . . . . . . . 13 (((𝐼 = 𝐾𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 𝐾)
2423eqcomd 2736 . . . . . . . . . . . 12 (((𝐼 = 𝐾𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 = 𝐼)
2522, 24oveq12d 7408 . . . . . . . . . . 11 (((𝐼 = 𝐾𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
26253exp1 1353 . . . . . . . . . 10 (𝐼 = 𝐾 → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
2721, 26jaoi 857 . . . . . . . . 9 ((𝐼 = 𝐽𝐼 = 𝐾) → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
286, 9, 273syl 18 . . . . . . . 8 (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
2928com13 88 . . . . . . 7 (𝐾 ∈ ℕ → (𝐽 ∈ ℕ → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
30 simp3 1138 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
31 simp2 1137 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐽 = 0)
32 simp1 1136 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐾 ∈ ℕ)
3332nngt0d 12242 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 0 < 𝐾)
3431, 33eqbrtrd 5132 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐽 < 𝐾)
3534iftrued 4499 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽)
3630, 35, 313eqtrd 2769 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = 0)
37 simpr1 1195 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐴𝑈)
38 simpr2 1196 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐵𝑉)
3937, 38xpexd 7730 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (𝐴 × 𝐵) ∈ V)
40 dmexg 7880 . . . . . . . . . . . . . 14 ((𝐴 × 𝐵) ∈ V → dom (𝐴 × 𝐵) ∈ V)
41 rnexg 7881 . . . . . . . . . . . . . 14 ((𝐴 × 𝐵) ∈ V → ran (𝐴 × 𝐵) ∈ V)
4240, 41jca 511 . . . . . . . . . . . . 13 ((𝐴 × 𝐵) ∈ V → (dom (𝐴 × 𝐵) ∈ V ∧ ran (𝐴 × 𝐵) ∈ V))
43 unexg 7722 . . . . . . . . . . . . 13 ((dom (𝐴 × 𝐵) ∈ V ∧ ran (𝐴 × 𝐵) ∈ V) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) ∈ V)
4439, 42, 433syl 18 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) ∈ V)
45 simpl1 1192 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 ∈ ℕ)
4645nnnn0d 12510 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 ∈ ℕ0)
47 relexpiidm 43700 . . . . . . . . . . . 12 (((dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) ∈ V ∧ 𝐾 ∈ ℕ0) → (( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))↑𝑟𝐾) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
4844, 46, 47syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))↑𝑟𝐾) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
49 simpl2 1193 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐽 = 0)
5049oveq2d 7406 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = ((𝐴 × 𝐵)↑𝑟0))
51 relexp0g 14995 . . . . . . . . . . . . . 14 ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵)↑𝑟0) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
5239, 51syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟0) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
5350, 52eqtrd 2765 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
5453oveq1d 7405 . . . . . . . . . . 11 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = (( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))↑𝑟𝐾))
55 simpl3 1194 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 0)
5655oveq2d 7406 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟0))
5756, 52eqtrd 2765 . . . . . . . . . . 11 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
5848, 54, 573eqtr4d 2775 . . . . . . . . . 10 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
5958ex 412 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))
6036, 59syld3an3 1411 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))
61603exp 1119 . . . . . . 7 (𝐾 ∈ ℕ → (𝐽 = 0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
6229, 61jaod 859 . . . . . 6 (𝐾 ∈ ℕ → ((𝐽 ∈ ℕ ∨ 𝐽 = 0) → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
632, 62biimtrid 242 . . . . 5 (𝐾 ∈ ℕ → (𝐽 ∈ ℕ0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
64 simp1 1136 . . . . . . 7 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐾 = 0)
652biimpi 216 . . . . . . . 8 (𝐽 ∈ ℕ0 → (𝐽 ∈ ℕ ∨ 𝐽 = 0))
66653ad2ant2 1134 . . . . . . 7 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → (𝐽 ∈ ℕ ∨ 𝐽 = 0))
67 simp3 1138 . . . . . . . 8 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
68 nn0nlt0 12475 . . . . . . . . . . 11 (𝐽 ∈ ℕ0 → ¬ 𝐽 < 0)
69683ad2ant2 1134 . . . . . . . . . 10 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ¬ 𝐽 < 0)
7064breq2d 5122 . . . . . . . . . 10 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → (𝐽 < 𝐾𝐽 < 0))
7169, 70mtbird 325 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ¬ 𝐽 < 𝐾)
7271iffalsed 4502 . . . . . . . 8 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)
7367, 72, 643eqtrd 2769 . . . . . . 7 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = 0)
74133ad2ant2 1134 . . . . . . . . . . . 12 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵)))
7574imp 406 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵))
7675oveq1d 7405 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟0) = ((𝐴 × 𝐵)↑𝑟0))
77 simpl1 1192 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 = 0)
7877oveq2d 7406 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟0))
79 simpl3 1194 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 0)
8079oveq2d 7406 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟0))
8176, 78, 803eqtr4d 2775 . . . . . . . . 9 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
82813exp1 1353 . . . . . . . 8 (𝐾 = 0 → (𝐽 ∈ ℕ → (𝐼 = 0 → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
83 simpr1 1195 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐴𝑈)
84 simpr2 1196 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐵𝑉)
8583, 84xpexd 7730 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (𝐴 × 𝐵) ∈ V)
86 relexp0idm 43711 . . . . . . . . . . 11 ((𝐴 × 𝐵) ∈ V → (((𝐴 × 𝐵)↑𝑟0)↑𝑟0) = ((𝐴 × 𝐵)↑𝑟0))
8785, 86syl 17 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟0)↑𝑟0) = ((𝐴 × 𝐵)↑𝑟0))
88 simpl2 1193 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐽 = 0)
8988oveq2d 7406 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = ((𝐴 × 𝐵)↑𝑟0))
90 simpl1 1192 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 = 0)
9189, 90oveq12d 7408 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = (((𝐴 × 𝐵)↑𝑟0)↑𝑟0))
92 simpl3 1194 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 0)
9392oveq2d 7406 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟0))
9487, 91, 933eqtr4d 2775 . . . . . . . . 9 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
95943exp1 1353 . . . . . . . 8 (𝐾 = 0 → (𝐽 = 0 → (𝐼 = 0 → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
9682, 95jaod 859 . . . . . . 7 (𝐾 = 0 → ((𝐽 ∈ ℕ ∨ 𝐽 = 0) → (𝐼 = 0 → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
9764, 66, 73, 96syl3c 66 . . . . . 6 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))
98973exp 1119 . . . . 5 (𝐾 = 0 → (𝐽 ∈ ℕ0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
9963, 98jaoi 857 . . . 4 ((𝐾 ∈ ℕ ∨ 𝐾 = 0) → (𝐽 ∈ ℕ0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
1001, 99sylbi 217 . . 3 (𝐾 ∈ ℕ0 → (𝐽 ∈ ℕ0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
1011003imp31 1111 . 2 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ 𝐽 ∈ ℕ0𝐾 ∈ ℕ0) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))
102101impcom 407 1 (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ 𝐽 ∈ ℕ0𝐾 ∈ ℕ0)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  cun 3915  cin 3916  c0 4299  ifcif 4491   class class class wbr 5110   I cid 5535   × cxp 5639  dom cdm 5641  ran crn 5642  cres 5643  (class class class)co 7390  0cc0 11075   < clt 11215  cn 12193  0cn0 12449  𝑟crelexp 14992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-relexp 14993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator