Proof of Theorem relexpxpmin
| Step | Hyp | Ref
| Expression |
| 1 | | elnn0 12528 |
. . . 4
⊢ (𝐾 ∈ ℕ0
↔ (𝐾 ∈ ℕ
∨ 𝐾 =
0)) |
| 2 | | elnn0 12528 |
. . . . . 6
⊢ (𝐽 ∈ ℕ0
↔ (𝐽 ∈ ℕ
∨ 𝐽 =
0)) |
| 3 | | ifeqor 4577 |
. . . . . . . . . 10
⊢ (if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽 ∨ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾) |
| 4 | | andi 1010 |
. . . . . . . . . . 11
⊢ ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ (if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽 ∨ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)) ↔ ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾))) |
| 5 | 4 | biimpi 216 |
. . . . . . . . . 10
⊢ ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ (if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽 ∨ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)) → ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾))) |
| 6 | 3, 5 | mpan2 691 |
. . . . . . . . 9
⊢ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾))) |
| 7 | | eqtr 2760 |
. . . . . . . . . 10
⊢ ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) → 𝐼 = 𝐽) |
| 8 | | eqtr 2760 |
. . . . . . . . . 10
⊢ ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾) → 𝐼 = 𝐾) |
| 9 | 7, 8 | orim12i 909 |
. . . . . . . . 9
⊢ (((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)) → (𝐼 = 𝐽 ∨ 𝐼 = 𝐾)) |
| 10 | | relexpxpnnidm 43716 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ ℕ → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝐾) = (𝐴 × 𝐵))) |
| 11 | 10 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐾) = (𝐴 × 𝐵)) |
| 12 | 11 | 3ad2antl3 1188 |
. . . . . . . . . . . 12
⊢ (((𝐼 = 𝐽 ∧ 𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐾) = (𝐴 × 𝐵)) |
| 13 | | relexpxpnnidm 43716 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ ℕ → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵))) |
| 14 | 13 | imp 406 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ ℕ ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵)) |
| 15 | 14 | 3ad2antl2 1187 |
. . . . . . . . . . . . 13
⊢ (((𝐼 = 𝐽 ∧ 𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵)) |
| 16 | 15 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ (((𝐼 = 𝐽 ∧ 𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐾)) |
| 17 | | simpl1 1192 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 = 𝐽 ∧ 𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → 𝐼 = 𝐽) |
| 18 | 17 | oveq2d 7447 |
. . . . . . . . . . . . 13
⊢ (((𝐼 = 𝐽 ∧ 𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟𝐽)) |
| 19 | 18, 15 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ (((𝐼 = 𝐽 ∧ 𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = (𝐴 × 𝐵)) |
| 20 | 12, 16, 19 | 3eqtr4d 2787 |
. . . . . . . . . . 11
⊢ (((𝐼 = 𝐽 ∧ 𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)) |
| 21 | 20 | 3exp1 1353 |
. . . . . . . . . 10
⊢ (𝐼 = 𝐽 → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))))) |
| 22 | 14 | 3ad2antl2 1187 |
. . . . . . . . . . . 12
⊢ (((𝐼 = 𝐾 ∧ 𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵)) |
| 23 | | simpl1 1192 |
. . . . . . . . . . . . 13
⊢ (((𝐼 = 𝐾 ∧ 𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → 𝐼 = 𝐾) |
| 24 | 23 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ (((𝐼 = 𝐾 ∧ 𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → 𝐾 = 𝐼) |
| 25 | 22, 24 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (((𝐼 = 𝐾 ∧ 𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)) |
| 26 | 25 | 3exp1 1353 |
. . . . . . . . . 10
⊢ (𝐼 = 𝐾 → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))))) |
| 27 | 21, 26 | jaoi 858 |
. . . . . . . . 9
⊢ ((𝐼 = 𝐽 ∨ 𝐼 = 𝐾) → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))))) |
| 28 | 6, 9, 27 | 3syl 18 |
. . . . . . . 8
⊢ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))))) |
| 29 | 28 | com13 88 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → (𝐽 ∈ ℕ → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))))) |
| 30 | | simp3 1139 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) |
| 31 | | simp2 1138 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐽 = 0) |
| 32 | | simp1 1137 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐾 ∈ ℕ) |
| 33 | 32 | nngt0d 12315 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 0 < 𝐾) |
| 34 | 31, 33 | eqbrtrd 5165 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐽 < 𝐾) |
| 35 | 34 | iftrued 4533 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) |
| 36 | 30, 35, 31 | 3eqtrd 2781 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = 0) |
| 37 | | simpr1 1195 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → 𝐴 ∈ 𝑈) |
| 38 | | simpr2 1196 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → 𝐵 ∈ 𝑉) |
| 39 | 37, 38 | xpexd 7771 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → (𝐴 × 𝐵) ∈ V) |
| 40 | | dmexg 7923 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 × 𝐵) ∈ V → dom (𝐴 × 𝐵) ∈ V) |
| 41 | | rnexg 7924 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 × 𝐵) ∈ V → ran (𝐴 × 𝐵) ∈ V) |
| 42 | 40, 41 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝐴 × 𝐵) ∈ V → (dom (𝐴 × 𝐵) ∈ V ∧ ran (𝐴 × 𝐵) ∈ V)) |
| 43 | | unexg 7763 |
. . . . . . . . . . . . 13
⊢ ((dom
(𝐴 × 𝐵) ∈ V ∧ ran (𝐴 × 𝐵) ∈ V) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) ∈ V) |
| 44 | 39, 42, 43 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) ∈ V) |
| 45 | | simpl1 1192 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → 𝐾 ∈ ℕ) |
| 46 | 45 | nnnn0d 12587 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → 𝐾 ∈
ℕ0) |
| 47 | | relexpiidm 43717 |
. . . . . . . . . . . 12
⊢ (((dom
(𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) ∈ V ∧ 𝐾 ∈ ℕ0) → (( I
↾ (dom (𝐴 ×
𝐵) ∪ ran (𝐴 × 𝐵)))↑𝑟𝐾) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))) |
| 48 | 44, 46, 47 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → (( I ↾ (dom
(𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))↑𝑟𝐾) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))) |
| 49 | | simpl2 1193 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → 𝐽 = 0) |
| 50 | 49 | oveq2d 7447 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = ((𝐴 × 𝐵)↑𝑟0)) |
| 51 | | relexp0g 15061 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵)↑𝑟0) = ( I ↾
(dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))) |
| 52 | 39, 51 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟0) = ( I ↾
(dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))) |
| 53 | 50, 52 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))) |
| 54 | 53 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = (( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))↑𝑟𝐾)) |
| 55 | | simpl3 1194 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → 𝐼 = 0) |
| 56 | 55 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟0)) |
| 57 | 56, 52 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))) |
| 58 | 48, 54, 57 | 3eqtr4d 2787 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)) |
| 59 | 58 | ex 412 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))) |
| 60 | 36, 59 | syld3an3 1411 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))) |
| 61 | 60 | 3exp 1120 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → (𝐽 = 0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))))) |
| 62 | 29, 61 | jaod 860 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → ((𝐽 ∈ ℕ ∨ 𝐽 = 0) → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))))) |
| 63 | 2, 62 | biimtrid 242 |
. . . . 5
⊢ (𝐾 ∈ ℕ → (𝐽 ∈ ℕ0
→ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))))) |
| 64 | | simp1 1137 |
. . . . . . 7
⊢ ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐾 = 0) |
| 65 | 2 | biimpi 216 |
. . . . . . . 8
⊢ (𝐽 ∈ ℕ0
→ (𝐽 ∈ ℕ
∨ 𝐽 =
0)) |
| 66 | 65 | 3ad2ant2 1135 |
. . . . . . 7
⊢ ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → (𝐽 ∈ ℕ ∨ 𝐽 = 0)) |
| 67 | | simp3 1139 |
. . . . . . . 8
⊢ ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) |
| 68 | | nn0nlt0 12552 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ ℕ0
→ ¬ 𝐽 <
0) |
| 69 | 68 | 3ad2ant2 1135 |
. . . . . . . . . 10
⊢ ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ¬ 𝐽 < 0) |
| 70 | 64 | breq2d 5155 |
. . . . . . . . . 10
⊢ ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → (𝐽 < 𝐾 ↔ 𝐽 < 0)) |
| 71 | 69, 70 | mtbird 325 |
. . . . . . . . 9
⊢ ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ¬ 𝐽 < 𝐾) |
| 72 | 71 | iffalsed 4536 |
. . . . . . . 8
⊢ ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾) |
| 73 | 67, 72, 64 | 3eqtrd 2781 |
. . . . . . 7
⊢ ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = 0) |
| 74 | 13 | 3ad2ant2 1135 |
. . . . . . . . . . . 12
⊢ ((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵))) |
| 75 | 74 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵)) |
| 76 | 75 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟0) = ((𝐴 × 𝐵)↑𝑟0)) |
| 77 | | simpl1 1192 |
. . . . . . . . . . 11
⊢ (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → 𝐾 = 0) |
| 78 | 77 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟0)) |
| 79 | | simpl3 1194 |
. . . . . . . . . . 11
⊢ (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → 𝐼 = 0) |
| 80 | 79 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟0)) |
| 81 | 76, 78, 80 | 3eqtr4d 2787 |
. . . . . . . . 9
⊢ (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)) |
| 82 | 81 | 3exp1 1353 |
. . . . . . . 8
⊢ (𝐾 = 0 → (𝐽 ∈ ℕ → (𝐼 = 0 → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))))) |
| 83 | | simpr1 1195 |
. . . . . . . . . . . 12
⊢ (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → 𝐴 ∈ 𝑈) |
| 84 | | simpr2 1196 |
. . . . . . . . . . . 12
⊢ (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → 𝐵 ∈ 𝑉) |
| 85 | 83, 84 | xpexd 7771 |
. . . . . . . . . . 11
⊢ (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → (𝐴 × 𝐵) ∈ V) |
| 86 | | relexp0idm 43728 |
. . . . . . . . . . 11
⊢ ((𝐴 × 𝐵) ∈ V → (((𝐴 × 𝐵)↑𝑟0)↑𝑟0)
= ((𝐴 × 𝐵)↑𝑟0)) |
| 87 | 85, 86 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟0)↑𝑟0)
= ((𝐴 × 𝐵)↑𝑟0)) |
| 88 | | simpl2 1193 |
. . . . . . . . . . . 12
⊢ (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → 𝐽 = 0) |
| 89 | 88 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = ((𝐴 × 𝐵)↑𝑟0)) |
| 90 | | simpl1 1192 |
. . . . . . . . . . 11
⊢ (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → 𝐾 = 0) |
| 91 | 89, 90 | oveq12d 7449 |
. . . . . . . . . 10
⊢ (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = (((𝐴 × 𝐵)↑𝑟0)↑𝑟0)) |
| 92 | | simpl3 1194 |
. . . . . . . . . . 11
⊢ (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → 𝐼 = 0) |
| 93 | 92 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟0)) |
| 94 | 87, 91, 93 | 3eqtr4d 2787 |
. . . . . . . . 9
⊢ (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)) |
| 95 | 94 | 3exp1 1353 |
. . . . . . . 8
⊢ (𝐾 = 0 → (𝐽 = 0 → (𝐼 = 0 → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))))) |
| 96 | 82, 95 | jaod 860 |
. . . . . . 7
⊢ (𝐾 = 0 → ((𝐽 ∈ ℕ ∨ 𝐽 = 0) → (𝐼 = 0 → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))))) |
| 97 | 64, 66, 73, 96 | syl3c 66 |
. . . . . 6
⊢ ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))) |
| 98 | 97 | 3exp 1120 |
. . . . 5
⊢ (𝐾 = 0 → (𝐽 ∈ ℕ0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))))) |
| 99 | 63, 98 | jaoi 858 |
. . . 4
⊢ ((𝐾 ∈ ℕ ∨ 𝐾 = 0) → (𝐽 ∈ ℕ0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))))) |
| 100 | 1, 99 | sylbi 217 |
. . 3
⊢ (𝐾 ∈ ℕ0
→ (𝐽 ∈
ℕ0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))))) |
| 101 | 100 | 3imp31 1112 |
. 2
⊢ ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ 𝐽 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0)
→ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))) |
| 102 | 101 | impcom 407 |
1
⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) ∧ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ 𝐽 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0))
→ (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)) |