Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpxpmin Structured version   Visualization version   GIF version

Theorem relexpxpmin 41214
Description: The composition of powers of a Cartesian product of non-disjoint sets is the Cartesian product raised to the minimum exponent. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
relexpxpmin (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ 𝐽 ∈ ℕ0𝐾 ∈ ℕ0)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))

Proof of Theorem relexpxpmin
StepHypRef Expression
1 elnn0 12165 . . . 4 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
2 elnn0 12165 . . . . . 6 (𝐽 ∈ ℕ0 ↔ (𝐽 ∈ ℕ ∨ 𝐽 = 0))
3 ifeqor 4507 . . . . . . . . . 10 (if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽 ∨ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)
4 andi 1004 . . . . . . . . . . 11 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ (if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽 ∨ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)) ↔ ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)))
54biimpi 215 . . . . . . . . . 10 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ (if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽 ∨ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)) → ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)))
63, 5mpan2 687 . . . . . . . . 9 (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)))
7 eqtr 2761 . . . . . . . . . 10 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) → 𝐼 = 𝐽)
8 eqtr 2761 . . . . . . . . . 10 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾) → 𝐼 = 𝐾)
97, 8orim12i 905 . . . . . . . . 9 (((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽) ∨ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)) → (𝐼 = 𝐽𝐼 = 𝐾))
10 relexpxpnnidm 41200 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝐾) = (𝐴 × 𝐵)))
1110imp 406 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐾) = (𝐴 × 𝐵))
12113ad2antl3 1185 . . . . . . . . . . . 12 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐾) = (𝐴 × 𝐵))
13 relexpxpnnidm 41200 . . . . . . . . . . . . . . 15 (𝐽 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵)))
1413imp 406 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵))
15143ad2antl2 1184 . . . . . . . . . . . . 13 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵))
1615oveq1d 7270 . . . . . . . . . . . 12 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐾))
17 simpl1 1189 . . . . . . . . . . . . . 14 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 𝐽)
1817oveq2d 7271 . . . . . . . . . . . . 13 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟𝐽))
1918, 15eqtrd 2778 . . . . . . . . . . . 12 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = (𝐴 × 𝐵))
2012, 16, 193eqtr4d 2788 . . . . . . . . . . 11 (((𝐼 = 𝐽𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
21203exp1 1350 . . . . . . . . . 10 (𝐼 = 𝐽 → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
22143ad2antl2 1184 . . . . . . . . . . . 12 (((𝐼 = 𝐾𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵))
23 simpl1 1189 . . . . . . . . . . . . 13 (((𝐼 = 𝐾𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 𝐾)
2423eqcomd 2744 . . . . . . . . . . . 12 (((𝐼 = 𝐾𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 = 𝐼)
2522, 24oveq12d 7273 . . . . . . . . . . 11 (((𝐼 = 𝐾𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
26253exp1 1350 . . . . . . . . . 10 (𝐼 = 𝐾 → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
2721, 26jaoi 853 . . . . . . . . 9 ((𝐼 = 𝐽𝐼 = 𝐾) → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
286, 9, 273syl 18 . . . . . . . 8 (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → (𝐽 ∈ ℕ → (𝐾 ∈ ℕ → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
2928com13 88 . . . . . . 7 (𝐾 ∈ ℕ → (𝐽 ∈ ℕ → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
30 simp3 1136 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
31 simp2 1135 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐽 = 0)
32 simp1 1134 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐾 ∈ ℕ)
3332nngt0d 11952 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 0 < 𝐾)
3431, 33eqbrtrd 5092 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐽 < 𝐾)
3534iftrued 4464 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐽)
3630, 35, 313eqtrd 2782 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = 0)
37 simpr1 1192 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐴𝑈)
38 simpr2 1193 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐵𝑉)
3937, 38xpexd 7579 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (𝐴 × 𝐵) ∈ V)
40 dmexg 7724 . . . . . . . . . . . . . 14 ((𝐴 × 𝐵) ∈ V → dom (𝐴 × 𝐵) ∈ V)
41 rnexg 7725 . . . . . . . . . . . . . 14 ((𝐴 × 𝐵) ∈ V → ran (𝐴 × 𝐵) ∈ V)
4240, 41jca 511 . . . . . . . . . . . . 13 ((𝐴 × 𝐵) ∈ V → (dom (𝐴 × 𝐵) ∈ V ∧ ran (𝐴 × 𝐵) ∈ V))
43 unexg 7577 . . . . . . . . . . . . 13 ((dom (𝐴 × 𝐵) ∈ V ∧ ran (𝐴 × 𝐵) ∈ V) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) ∈ V)
4439, 42, 433syl 18 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) ∈ V)
45 simpl1 1189 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 ∈ ℕ)
4645nnnn0d 12223 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 ∈ ℕ0)
47 relexpiidm 41201 . . . . . . . . . . . 12 (((dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) ∈ V ∧ 𝐾 ∈ ℕ0) → (( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))↑𝑟𝐾) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
4844, 46, 47syl2anc 583 . . . . . . . . . . 11 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))↑𝑟𝐾) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
49 simpl2 1190 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐽 = 0)
5049oveq2d 7271 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = ((𝐴 × 𝐵)↑𝑟0))
51 relexp0g 14661 . . . . . . . . . . . . . 14 ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵)↑𝑟0) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
5239, 51syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟0) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
5350, 52eqtrd 2778 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
5453oveq1d 7270 . . . . . . . . . . 11 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = (( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))↑𝑟𝐾))
55 simpl3 1191 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 0)
5655oveq2d 7271 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟0))
5756, 52eqtrd 2778 . . . . . . . . . . 11 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ( I ↾ (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))))
5848, 54, 573eqtr4d 2788 . . . . . . . . . 10 (((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
5958ex 412 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = 0) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))
6036, 59syld3an3 1407 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝐽 = 0 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))
61603exp 1117 . . . . . . 7 (𝐾 ∈ ℕ → (𝐽 = 0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
6229, 61jaod 855 . . . . . 6 (𝐾 ∈ ℕ → ((𝐽 ∈ ℕ ∨ 𝐽 = 0) → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
632, 62syl5bi 241 . . . . 5 (𝐾 ∈ ℕ → (𝐽 ∈ ℕ0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
64 simp1 1134 . . . . . . 7 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐾 = 0)
652biimpi 215 . . . . . . . 8 (𝐽 ∈ ℕ0 → (𝐽 ∈ ℕ ∨ 𝐽 = 0))
66653ad2ant2 1132 . . . . . . 7 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → (𝐽 ∈ ℕ ∨ 𝐽 = 0))
67 simp3 1136 . . . . . . . 8 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾))
68 nn0nlt0 12189 . . . . . . . . . . 11 (𝐽 ∈ ℕ0 → ¬ 𝐽 < 0)
69683ad2ant2 1132 . . . . . . . . . 10 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ¬ 𝐽 < 0)
7064breq2d 5082 . . . . . . . . . 10 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → (𝐽 < 𝐾𝐽 < 0))
7169, 70mtbird 324 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ¬ 𝐽 < 𝐾)
7271iffalsed 4467 . . . . . . . 8 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → if(𝐽 < 𝐾, 𝐽, 𝐾) = 𝐾)
7367, 72, 643eqtrd 2782 . . . . . . 7 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → 𝐼 = 0)
74133ad2ant2 1132 . . . . . . . . . . . 12 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵)))
7574imp 406 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = (𝐴 × 𝐵))
7675oveq1d 7270 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟0) = ((𝐴 × 𝐵)↑𝑟0))
77 simpl1 1189 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 = 0)
7877oveq2d 7271 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟0))
79 simpl3 1191 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 0)
8079oveq2d 7271 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟0))
8176, 78, 803eqtr4d 2788 . . . . . . . . 9 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
82813exp1 1350 . . . . . . . 8 (𝐾 = 0 → (𝐽 ∈ ℕ → (𝐼 = 0 → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
83 simpr1 1192 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐴𝑈)
84 simpr2 1193 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐵𝑉)
8583, 84xpexd 7579 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (𝐴 × 𝐵) ∈ V)
86 relexp0idm 41212 . . . . . . . . . . 11 ((𝐴 × 𝐵) ∈ V → (((𝐴 × 𝐵)↑𝑟0)↑𝑟0) = ((𝐴 × 𝐵)↑𝑟0))
8785, 86syl 17 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟0)↑𝑟0) = ((𝐴 × 𝐵)↑𝑟0))
88 simpl2 1190 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐽 = 0)
8988oveq2d 7271 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐽) = ((𝐴 × 𝐵)↑𝑟0))
90 simpl1 1189 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐾 = 0)
9189, 90oveq12d 7273 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = (((𝐴 × 𝐵)↑𝑟0)↑𝑟0))
92 simpl3 1191 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → 𝐼 = 0)
9392oveq2d 7271 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → ((𝐴 × 𝐵)↑𝑟𝐼) = ((𝐴 × 𝐵)↑𝑟0))
9487, 91, 933eqtr4d 2788 . . . . . . . . 9 (((𝐾 = 0 ∧ 𝐽 = 0 ∧ 𝐼 = 0) ∧ (𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
95943exp1 1350 . . . . . . . 8 (𝐾 = 0 → (𝐽 = 0 → (𝐼 = 0 → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
9682, 95jaod 855 . . . . . . 7 (𝐾 = 0 → ((𝐽 ∈ ℕ ∨ 𝐽 = 0) → (𝐼 = 0 → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
9764, 66, 73, 96syl3c 66 . . . . . 6 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ0𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))
98973exp 1117 . . . . 5 (𝐾 = 0 → (𝐽 ∈ ℕ0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
9963, 98jaoi 853 . . . 4 ((𝐾 ∈ ℕ ∨ 𝐾 = 0) → (𝐽 ∈ ℕ0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
1001, 99sylbi 216 . . 3 (𝐾 ∈ ℕ0 → (𝐽 ∈ ℕ0 → (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))))
1011003imp31 1110 . 2 ((𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ 𝐽 ∈ ℕ0𝐾 ∈ ℕ0) → ((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)))
102101impcom 407 1 (((𝐴𝑈𝐵𝑉 ∧ (𝐴𝐵) ≠ ∅) ∧ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ 𝐽 ∈ ℕ0𝐾 ∈ ℕ0)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  cun 3881  cin 3882  c0 4253  ifcif 4456   class class class wbr 5070   I cid 5479   × cxp 5578  dom cdm 5580  ran crn 5581  cres 5582  (class class class)co 7255  0cc0 10802   < clt 10940  cn 11903  0cn0 12163  𝑟crelexp 14658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-relexp 14659
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator