Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3com13 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com13 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1117 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp31 1110 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3comr 1123 3coml 1125 oacan 8341 oaword1 8345 nnacan 8421 nnaword1 8422 elmapg 8586 fisseneq 8963 ltapr 10732 subadd 11154 ltaddsub 11379 leaddsub 11381 iooshf 13087 faclbnd4 13939 relexpsucl 14670 relexpsucr 14671 dvdsmulc 15921 lcmdvdsb 16246 infpnlem1 16539 fmf 23004 frgr3v 28540 nvs 28926 dipdi 29106 dipsubdi 29112 spansncol 29831 chirredlem2 30654 mdsymlem3 30668 isbasisrelowllem2 35454 ltflcei 35692 iscringd 36083 resubadd 40283 iunrelexp0 41199 uun123p4 42321 isosctrlem1ALT 42443 stoweidlem17 43448 |
Copyright terms: Public domain | W3C validator |