| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com13 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com13 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp31 1111 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3comr 1125 3coml 1127 oacan 8560 oaword1 8564 nnacan 8640 nnaword1 8641 elmapg 8853 fisseneq 9265 ltapr 11059 subadd 11485 ltaddsub 11711 leaddsub 11713 iooshf 13443 faclbnd4 14315 relexpsucl 15050 relexpsucr 15051 dvdsmulc 16303 lcmdvdsb 16632 infpnlem1 16930 fmf 23883 frgr3v 30256 nvs 30644 dipdi 30824 dipsubdi 30830 spansncol 31549 chirredlem2 32372 mdsymlem3 32386 isbasisrelowllem2 37374 ltflcei 37632 iscringd 38022 resubadd 42422 iunrelexp0 43726 uun123p4 44836 isosctrlem1ALT 44958 stoweidlem17 46046 |
| Copyright terms: Public domain | W3C validator |