![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3com13 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com13 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1118 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp31 1111 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3comr 1124 3coml 1126 oacan 8585 oaword1 8589 nnacan 8665 nnaword1 8666 elmapg 8878 fisseneq 9291 ltapr 11083 subadd 11509 ltaddsub 11735 leaddsub 11737 iooshf 13463 faclbnd4 14333 relexpsucl 15067 relexpsucr 15068 dvdsmulc 16318 lcmdvdsb 16647 infpnlem1 16944 fmf 23969 frgr3v 30304 nvs 30692 dipdi 30872 dipsubdi 30878 spansncol 31597 chirredlem2 32420 mdsymlem3 32434 isbasisrelowllem2 37339 ltflcei 37595 iscringd 37985 resubadd 42386 iunrelexp0 43692 uun123p4 44810 isosctrlem1ALT 44932 stoweidlem17 45973 |
Copyright terms: Public domain | W3C validator |