![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3com13 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com13 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp31 1112 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3comr 1125 3coml 1127 oacan 8604 oaword1 8608 nnacan 8684 nnaword1 8685 elmapg 8897 fisseneq 9320 ltapr 11114 subadd 11539 ltaddsub 11764 leaddsub 11766 iooshf 13486 faclbnd4 14346 relexpsucl 15080 relexpsucr 15081 dvdsmulc 16332 lcmdvdsb 16660 infpnlem1 16957 fmf 23974 frgr3v 30307 nvs 30695 dipdi 30875 dipsubdi 30881 spansncol 31600 chirredlem2 32423 mdsymlem3 32437 isbasisrelowllem2 37322 ltflcei 37568 iscringd 37958 resubadd 42355 iunrelexp0 43664 uun123p4 44783 isosctrlem1ALT 44905 stoweidlem17 45938 |
Copyright terms: Public domain | W3C validator |