| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com13 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com13 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp31 1111 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3comr 1125 3coml 1127 oacan 8489 oaword1 8493 nnacan 8569 nnaword1 8570 elmapg 8789 fisseneq 9180 ltapr 10974 subadd 11400 ltaddsub 11628 leaddsub 11630 iooshf 13363 faclbnd4 14238 relexpsucl 14973 relexpsucr 14974 dvdsmulc 16229 lcmdvdsb 16559 infpnlem1 16857 fmf 23865 frgr3v 30254 nvs 30642 dipdi 30822 dipsubdi 30828 spansncol 31547 chirredlem2 32370 mdsymlem3 32384 isbasisrelowllem2 37337 ltflcei 37595 iscringd 37985 resubadd 42360 iunrelexp0 43684 uun123p4 44794 isosctrlem1ALT 44916 stoweidlem17 46008 |
| Copyright terms: Public domain | W3C validator |