| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com13 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com13 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp31 1111 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3comr 1125 3coml 1127 oacan 8463 oaword1 8467 nnacan 8543 nnaword1 8544 elmapg 8763 fisseneq 9147 ltapr 10936 subadd 11363 ltaddsub 11591 leaddsub 11593 iooshf 13326 faclbnd4 14204 relexpsucl 14938 relexpsucr 14939 dvdsmulc 16194 lcmdvdsb 16524 infpnlem1 16822 fmf 23860 frgr3v 30255 nvs 30643 dipdi 30823 dipsubdi 30829 spansncol 31548 chirredlem2 32371 mdsymlem3 32385 isbasisrelowllem2 37398 ltflcei 37656 iscringd 38046 resubadd 42420 iunrelexp0 43743 uun123p4 44852 isosctrlem1ALT 44974 stoweidlem17 46063 |
| Copyright terms: Public domain | W3C validator |