| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com13 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com13 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp31 1111 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3comr 1125 3coml 1127 oacan 8466 oaword1 8470 nnacan 8546 nnaword1 8547 elmapg 8766 fisseneq 9152 ltapr 10939 subadd 11366 ltaddsub 11594 leaddsub 11596 iooshf 13329 faclbnd4 14204 relexpsucl 14938 relexpsucr 14939 dvdsmulc 16194 lcmdvdsb 16524 infpnlem1 16822 fmf 23830 frgr3v 30219 nvs 30607 dipdi 30787 dipsubdi 30793 spansncol 31512 chirredlem2 32335 mdsymlem3 32349 isbasisrelowllem2 37330 ltflcei 37588 iscringd 37978 resubadd 42352 iunrelexp0 43675 uun123p4 44785 isosctrlem1ALT 44907 stoweidlem17 45998 |
| Copyright terms: Public domain | W3C validator |