MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3com13 Structured version   Visualization version   GIF version

Theorem 3com13 1125
Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 22-Jun-2022.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3com13 ((𝜒𝜓𝜑) → 𝜃)

Proof of Theorem 3com13
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213exp 1120 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
323imp31 1112 1 ((𝜒𝜓𝜑) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  3comr  1126  3coml  1128  oacan  8586  oaword1  8590  nnacan  8666  nnaword1  8667  elmapg  8879  fisseneq  9293  ltapr  11085  subadd  11511  ltaddsub  11737  leaddsub  11739  iooshf  13466  faclbnd4  14336  relexpsucl  15070  relexpsucr  15071  dvdsmulc  16321  lcmdvdsb  16650  infpnlem1  16948  fmf  23953  frgr3v  30294  nvs  30682  dipdi  30862  dipsubdi  30868  spansncol  31587  chirredlem2  32410  mdsymlem3  32424  isbasisrelowllem2  37357  ltflcei  37615  iscringd  38005  resubadd  42409  iunrelexp0  43715  uun123p4  44832  isosctrlem1ALT  44954  stoweidlem17  46032
  Copyright terms: Public domain W3C validator