![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3com13 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com13 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp31 1112 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: 3comr 1125 3coml 1127 oacan 8547 oaword1 8551 nnacan 8627 nnaword1 8628 elmapg 8832 fisseneq 9256 ltapr 11039 subadd 11462 ltaddsub 11687 leaddsub 11689 iooshf 13402 faclbnd4 14256 relexpsucl 14977 relexpsucr 14978 dvdsmulc 16226 lcmdvdsb 16549 infpnlem1 16842 fmf 23448 frgr3v 29525 nvs 29911 dipdi 30091 dipsubdi 30097 spansncol 30816 chirredlem2 31639 mdsymlem3 31653 isbasisrelowllem2 36232 ltflcei 36471 iscringd 36861 resubadd 41253 iunrelexp0 42443 uun123p4 43563 isosctrlem1ALT 43685 stoweidlem17 44723 |
Copyright terms: Public domain | W3C validator |