| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com13 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com13 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp31 1111 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3comr 1125 3coml 1127 oacan 8512 oaword1 8516 nnacan 8592 nnaword1 8593 elmapg 8812 fisseneq 9204 ltapr 10998 subadd 11424 ltaddsub 11652 leaddsub 11654 iooshf 13387 faclbnd4 14262 relexpsucl 14997 relexpsucr 14998 dvdsmulc 16253 lcmdvdsb 16583 infpnlem1 16881 fmf 23832 frgr3v 30204 nvs 30592 dipdi 30772 dipsubdi 30778 spansncol 31497 chirredlem2 32320 mdsymlem3 32334 isbasisrelowllem2 37344 ltflcei 37602 iscringd 37992 resubadd 42367 iunrelexp0 43691 uun123p4 44801 isosctrlem1ALT 44923 stoweidlem17 46015 |
| Copyright terms: Public domain | W3C validator |