MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3com13 Structured version   Visualization version   GIF version

Theorem 3com13 1124
Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 22-Jun-2022.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3com13 ((𝜒𝜓𝜑) → 𝜃)

Proof of Theorem 3com13
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213exp 1119 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
323imp31 1111 1 ((𝜒𝜓𝜑) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3comr  1125  3coml  1127  oacan  8512  oaword1  8516  nnacan  8592  nnaword1  8593  elmapg  8812  fisseneq  9204  ltapr  10998  subadd  11424  ltaddsub  11652  leaddsub  11654  iooshf  13387  faclbnd4  14262  relexpsucl  14997  relexpsucr  14998  dvdsmulc  16253  lcmdvdsb  16583  infpnlem1  16881  fmf  23832  frgr3v  30204  nvs  30592  dipdi  30772  dipsubdi  30778  spansncol  31497  chirredlem2  32320  mdsymlem3  32334  isbasisrelowllem2  37344  ltflcei  37602  iscringd  37992  resubadd  42367  iunrelexp0  43691  uun123p4  44801  isosctrlem1ALT  44923  stoweidlem17  46015
  Copyright terms: Public domain W3C validator