| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com13 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com13 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp31 1111 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3comr 1125 3coml 1127 oacan 8489 oaword1 8493 nnacan 8569 nnaword1 8570 elmapg 8789 fisseneq 9180 ltapr 10974 subadd 11400 ltaddsub 11628 leaddsub 11630 iooshf 13363 faclbnd4 14238 relexpsucl 14973 relexpsucr 14974 dvdsmulc 16229 lcmdvdsb 16559 infpnlem1 16857 fmf 23808 frgr3v 30177 nvs 30565 dipdi 30745 dipsubdi 30751 spansncol 31470 chirredlem2 32293 mdsymlem3 32307 isbasisrelowllem2 37317 ltflcei 37575 iscringd 37965 resubadd 42340 iunrelexp0 43664 uun123p4 44774 isosctrlem1ALT 44896 stoweidlem17 45988 |
| Copyright terms: Public domain | W3C validator |