Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3com13 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com13 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1118 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp31 1111 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3comr 1124 3coml 1126 oacan 8379 oaword1 8383 nnacan 8459 nnaword1 8460 elmapg 8628 fisseneq 9034 ltapr 10801 subadd 11224 ltaddsub 11449 leaddsub 11451 iooshf 13158 faclbnd4 14011 relexpsucl 14742 relexpsucr 14743 dvdsmulc 15993 lcmdvdsb 16318 infpnlem1 16611 fmf 23096 frgr3v 28639 nvs 29025 dipdi 29205 dipsubdi 29211 spansncol 29930 chirredlem2 30753 mdsymlem3 30767 isbasisrelowllem2 35527 ltflcei 35765 iscringd 36156 resubadd 40362 iunrelexp0 41310 uun123p4 42432 isosctrlem1ALT 42554 stoweidlem17 43558 |
Copyright terms: Public domain | W3C validator |