| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com13 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com13 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp31 1111 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3comr 1125 3coml 1127 oacan 8515 oaword1 8519 nnacan 8595 nnaword1 8596 elmapg 8815 fisseneq 9211 ltapr 11005 subadd 11431 ltaddsub 11659 leaddsub 11661 iooshf 13394 faclbnd4 14269 relexpsucl 15004 relexpsucr 15005 dvdsmulc 16260 lcmdvdsb 16590 infpnlem1 16888 fmf 23839 frgr3v 30211 nvs 30599 dipdi 30779 dipsubdi 30785 spansncol 31504 chirredlem2 32327 mdsymlem3 32341 isbasisrelowllem2 37351 ltflcei 37609 iscringd 37999 resubadd 42374 iunrelexp0 43698 uun123p4 44808 isosctrlem1ALT 44930 stoweidlem17 46022 |
| Copyright terms: Public domain | W3C validator |