| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com13 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com13 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1120 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp31 1112 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: 3comr 1126 3coml 1128 oacan 8586 oaword1 8590 nnacan 8666 nnaword1 8667 elmapg 8879 fisseneq 9293 ltapr 11085 subadd 11511 ltaddsub 11737 leaddsub 11739 iooshf 13466 faclbnd4 14336 relexpsucl 15070 relexpsucr 15071 dvdsmulc 16321 lcmdvdsb 16650 infpnlem1 16948 fmf 23953 frgr3v 30294 nvs 30682 dipdi 30862 dipsubdi 30868 spansncol 31587 chirredlem2 32410 mdsymlem3 32424 isbasisrelowllem2 37357 ltflcei 37615 iscringd 38005 resubadd 42409 iunrelexp0 43715 uun123p4 44832 isosctrlem1ALT 44954 stoweidlem17 46032 |
| Copyright terms: Public domain | W3C validator |