MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2cwwk2dif Structured version   Visualization version   GIF version

Theorem umgr2cwwk2dif 27578
Description: If a word represents a closed walk of length at least 2 in a multigraph, the first two symbols of the word must be different. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 30-Apr-2021.)
Assertion
Ref Expression
umgr2cwwk2dif ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘1) ≠ (𝑊‘0))

Proof of Theorem umgr2cwwk2dif
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2772 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2772 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2clwwlknp 27542 . . 3 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
4 simpr 477 . . . . 5 (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝐺 ∈ UMGraph) → 𝐺 ∈ UMGraph)
5 uz2m1nn 12130 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
6 lbfzo0 12885 . . . . . . . . . . 11 (0 ∈ (0..^(𝑁 − 1)) ↔ (𝑁 − 1) ∈ ℕ)
75, 6sylibr 226 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 0 ∈ (0..^(𝑁 − 1)))
8 fveq2 6493 . . . . . . . . . . . . 13 (𝑖 = 0 → (𝑊𝑖) = (𝑊‘0))
98adantl 474 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → (𝑊𝑖) = (𝑊‘0))
10 oveq1 6977 . . . . . . . . . . . . . . 15 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
1110adantl 474 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → (𝑖 + 1) = (0 + 1))
12 0p1e1 11562 . . . . . . . . . . . . . 14 (0 + 1) = 1
1311, 12syl6eq 2824 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → (𝑖 + 1) = 1)
1413fveq2d 6497 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → (𝑊‘(𝑖 + 1)) = (𝑊‘1))
159, 14preq12d 4545 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘0), (𝑊‘1)})
1615eleq1d 2844 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
177, 16rspcdv 3532 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
1817com12 32 . . . . . . . 8 (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑁 ∈ (ℤ‘2) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
19183ad2ant2 1114 . . . . . . 7 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (ℤ‘2) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
2019imp 398 . . . . . 6 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ‘2)) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))
2120adantr 473 . . . . 5 (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝐺 ∈ UMGraph) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))
222umgredgne 26623 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) → (𝑊‘0) ≠ (𝑊‘1))
2322necomd 3016 . . . . 5 ((𝐺 ∈ UMGraph ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) → (𝑊‘1) ≠ (𝑊‘0))
244, 21, 23syl2anc 576 . . . 4 (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝐺 ∈ UMGraph) → (𝑊‘1) ≠ (𝑊‘0))
2524exp31 412 . . 3 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (ℤ‘2) → (𝐺 ∈ UMGraph → (𝑊‘1) ≠ (𝑊‘0))))
263, 25syl 17 . 2 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ (ℤ‘2) → (𝐺 ∈ UMGraph → (𝑊‘1) ≠ (𝑊‘0))))
27263imp31 1092 1 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘1) ≠ (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2048  wne 2961  wral 3082  {cpr 4437  cfv 6182  (class class class)co 6970  0cc0 10327  1c1 10328   + caddc 10330  cmin 10662  cn 11431  2c2 11488  cuz 12051  ..^cfzo 12842  chash 13498  Word cword 13662  lastSclsw 13715  Vtxcvtx 26474  Edgcedg 26525  UMGraphcumgr 26559   ClWWalksN cclwwlkn 27529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-oadd 7901  df-er 8081  df-map 8200  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-dju 9116  df-card 9154  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-n0 11701  df-xnn0 11773  df-z 11787  df-uz 12052  df-fz 12702  df-fzo 12843  df-hash 13499  df-word 13663  df-edg 26526  df-umgr 26561  df-clwwlk 27478  df-clwwlkn 27530
This theorem is referenced by:  umgr2cwwkdifex  27579
  Copyright terms: Public domain W3C validator