| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgr2cwwk2dif | Structured version Visualization version GIF version | ||
| Description: If a word represents a closed walk of length at least 2 in a multigraph, the first two symbols of the word must be different. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 30-Apr-2021.) |
| Ref | Expression |
|---|---|
| umgr2cwwk2dif | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘1) ≠ (𝑊‘0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2737 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | clwwlknp 30056 | . . 3 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) |
| 4 | simpr 484 | . . . . 5 ⊢ (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ 𝐺 ∈ UMGraph) → 𝐺 ∈ UMGraph) | |
| 5 | uz2m1nn 12965 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) | |
| 6 | lbfzo0 13739 | . . . . . . . . . . 11 ⊢ (0 ∈ (0..^(𝑁 − 1)) ↔ (𝑁 − 1) ∈ ℕ) | |
| 7 | 5, 6 | sylibr 234 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → 0 ∈ (0..^(𝑁 − 1))) |
| 8 | fveq2 6906 | . . . . . . . . . . . . 13 ⊢ (𝑖 = 0 → (𝑊‘𝑖) = (𝑊‘0)) | |
| 9 | 8 | adantl 481 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑖 = 0) → (𝑊‘𝑖) = (𝑊‘0)) |
| 10 | oveq1 7438 | . . . . . . . . . . . . . . 15 ⊢ (𝑖 = 0 → (𝑖 + 1) = (0 + 1)) | |
| 11 | 10 | adantl 481 | . . . . . . . . . . . . . 14 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑖 = 0) → (𝑖 + 1) = (0 + 1)) |
| 12 | 0p1e1 12388 | . . . . . . . . . . . . . 14 ⊢ (0 + 1) = 1 | |
| 13 | 11, 12 | eqtrdi 2793 | . . . . . . . . . . . . 13 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑖 = 0) → (𝑖 + 1) = 1) |
| 14 | 13 | fveq2d 6910 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑖 = 0) → (𝑊‘(𝑖 + 1)) = (𝑊‘1)) |
| 15 | 9, 14 | preq12d 4741 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑖 = 0) → {(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘0), (𝑊‘1)}) |
| 16 | 15 | eleq1d 2826 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑖 = 0) → ({(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) |
| 17 | 7, 16 | rspcdv 3614 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) |
| 18 | 17 | com12 32 | . . . . . . . 8 ⊢ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑁 ∈ (ℤ≥‘2) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) |
| 19 | 18 | 3ad2ant2 1135 | . . . . . . 7 ⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (ℤ≥‘2) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) |
| 20 | 19 | imp 406 | . . . . . 6 ⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ≥‘2)) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ 𝐺 ∈ UMGraph) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) |
| 22 | 2 | umgredgne 29162 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) → (𝑊‘0) ≠ (𝑊‘1)) |
| 23 | 22 | necomd 2996 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) → (𝑊‘1) ≠ (𝑊‘0)) |
| 24 | 4, 21, 23 | syl2anc 584 | . . . 4 ⊢ (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ 𝐺 ∈ UMGraph) → (𝑊‘1) ≠ (𝑊‘0)) |
| 25 | 24 | exp31 419 | . . 3 ⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (ℤ≥‘2) → (𝐺 ∈ UMGraph → (𝑊‘1) ≠ (𝑊‘0)))) |
| 26 | 3, 25 | syl 17 | . 2 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ (ℤ≥‘2) → (𝐺 ∈ UMGraph → (𝑊‘1) ≠ (𝑊‘0)))) |
| 27 | 26 | 3imp31 1112 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘1) ≠ (𝑊‘0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 {cpr 4628 ‘cfv 6561 (class class class)co 7431 0cc0 11155 1c1 11156 + caddc 11158 − cmin 11492 ℕcn 12266 2c2 12321 ℤ≥cuz 12878 ..^cfzo 13694 ♯chash 14369 Word cword 14552 lastSclsw 14600 Vtxcvtx 29013 Edgcedg 29064 UMGraphcumgr 29098 ClWWalksN cclwwlkn 30043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-hash 14370 df-word 14553 df-edg 29065 df-umgr 29100 df-clwwlk 30001 df-clwwlkn 30044 |
| This theorem is referenced by: umgr2cwwkdifex 30084 |
| Copyright terms: Public domain | W3C validator |