MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2cwwk2dif Structured version   Visualization version   GIF version

Theorem umgr2cwwk2dif 29993
Description: If a word represents a closed walk of length at least 2 in a multigraph, the first two symbols of the word must be different. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 30-Apr-2021.)
Assertion
Ref Expression
umgr2cwwk2dif ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘1) ≠ (𝑊‘0))

Proof of Theorem umgr2cwwk2dif
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2729 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2clwwlknp 29966 . . 3 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
4 simpr 484 . . . . 5 (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝐺 ∈ UMGraph) → 𝐺 ∈ UMGraph)
5 uz2m1nn 12882 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
6 lbfzo0 13660 . . . . . . . . . . 11 (0 ∈ (0..^(𝑁 − 1)) ↔ (𝑁 − 1) ∈ ℕ)
75, 6sylibr 234 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 0 ∈ (0..^(𝑁 − 1)))
8 fveq2 6858 . . . . . . . . . . . . 13 (𝑖 = 0 → (𝑊𝑖) = (𝑊‘0))
98adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → (𝑊𝑖) = (𝑊‘0))
10 oveq1 7394 . . . . . . . . . . . . . . 15 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
1110adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → (𝑖 + 1) = (0 + 1))
12 0p1e1 12303 . . . . . . . . . . . . . 14 (0 + 1) = 1
1311, 12eqtrdi 2780 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → (𝑖 + 1) = 1)
1413fveq2d 6862 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → (𝑊‘(𝑖 + 1)) = (𝑊‘1))
159, 14preq12d 4705 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘0), (𝑊‘1)})
1615eleq1d 2813 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
177, 16rspcdv 3580 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
1817com12 32 . . . . . . . 8 (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑁 ∈ (ℤ‘2) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
19183ad2ant2 1134 . . . . . . 7 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (ℤ‘2) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
2019imp 406 . . . . . 6 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ‘2)) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))
2120adantr 480 . . . . 5 (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝐺 ∈ UMGraph) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))
222umgredgne 29072 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) → (𝑊‘0) ≠ (𝑊‘1))
2322necomd 2980 . . . . 5 ((𝐺 ∈ UMGraph ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) → (𝑊‘1) ≠ (𝑊‘0))
244, 21, 23syl2anc 584 . . . 4 (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝐺 ∈ UMGraph) → (𝑊‘1) ≠ (𝑊‘0))
2524exp31 419 . . 3 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (ℤ‘2) → (𝐺 ∈ UMGraph → (𝑊‘1) ≠ (𝑊‘0))))
263, 25syl 17 . 2 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ (ℤ‘2) → (𝐺 ∈ UMGraph → (𝑊‘1) ≠ (𝑊‘0))))
27263imp31 1111 1 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘1) ≠ (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {cpr 4591  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071  cmin 11405  cn 12186  2c2 12241  cuz 12793  ..^cfzo 13615  chash 14295  Word cword 14478  lastSclsw 14527  Vtxcvtx 28923  Edgcedg 28974  UMGraphcumgr 29008   ClWWalksN cclwwlkn 29953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-edg 28975  df-umgr 29010  df-clwwlk 29911  df-clwwlkn 29954
This theorem is referenced by:  umgr2cwwkdifex  29994
  Copyright terms: Public domain W3C validator