| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgr2cwwk2dif | Structured version Visualization version GIF version | ||
| Description: If a word represents a closed walk of length at least 2 in a multigraph, the first two symbols of the word must be different. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 30-Apr-2021.) |
| Ref | Expression |
|---|---|
| umgr2cwwk2dif | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘1) ≠ (𝑊‘0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2730 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | clwwlknp 29973 | . . 3 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) |
| 4 | simpr 484 | . . . . 5 ⊢ (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ 𝐺 ∈ UMGraph) → 𝐺 ∈ UMGraph) | |
| 5 | uz2m1nn 12889 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) | |
| 6 | lbfzo0 13667 | . . . . . . . . . . 11 ⊢ (0 ∈ (0..^(𝑁 − 1)) ↔ (𝑁 − 1) ∈ ℕ) | |
| 7 | 5, 6 | sylibr 234 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → 0 ∈ (0..^(𝑁 − 1))) |
| 8 | fveq2 6861 | . . . . . . . . . . . . 13 ⊢ (𝑖 = 0 → (𝑊‘𝑖) = (𝑊‘0)) | |
| 9 | 8 | adantl 481 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑖 = 0) → (𝑊‘𝑖) = (𝑊‘0)) |
| 10 | oveq1 7397 | . . . . . . . . . . . . . . 15 ⊢ (𝑖 = 0 → (𝑖 + 1) = (0 + 1)) | |
| 11 | 10 | adantl 481 | . . . . . . . . . . . . . 14 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑖 = 0) → (𝑖 + 1) = (0 + 1)) |
| 12 | 0p1e1 12310 | . . . . . . . . . . . . . 14 ⊢ (0 + 1) = 1 | |
| 13 | 11, 12 | eqtrdi 2781 | . . . . . . . . . . . . 13 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑖 = 0) → (𝑖 + 1) = 1) |
| 14 | 13 | fveq2d 6865 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑖 = 0) → (𝑊‘(𝑖 + 1)) = (𝑊‘1)) |
| 15 | 9, 14 | preq12d 4708 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑖 = 0) → {(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘0), (𝑊‘1)}) |
| 16 | 15 | eleq1d 2814 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑖 = 0) → ({(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) |
| 17 | 7, 16 | rspcdv 3583 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) |
| 18 | 17 | com12 32 | . . . . . . . 8 ⊢ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑁 ∈ (ℤ≥‘2) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) |
| 19 | 18 | 3ad2ant2 1134 | . . . . . . 7 ⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (ℤ≥‘2) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) |
| 20 | 19 | imp 406 | . . . . . 6 ⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ≥‘2)) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ 𝐺 ∈ UMGraph) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) |
| 22 | 2 | umgredgne 29079 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) → (𝑊‘0) ≠ (𝑊‘1)) |
| 23 | 22 | necomd 2981 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) → (𝑊‘1) ≠ (𝑊‘0)) |
| 24 | 4, 21, 23 | syl2anc 584 | . . . 4 ⊢ (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ 𝐺 ∈ UMGraph) → (𝑊‘1) ≠ (𝑊‘0)) |
| 25 | 24 | exp31 419 | . . 3 ⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (ℤ≥‘2) → (𝐺 ∈ UMGraph → (𝑊‘1) ≠ (𝑊‘0)))) |
| 26 | 3, 25 | syl 17 | . 2 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ (ℤ≥‘2) → (𝐺 ∈ UMGraph → (𝑊‘1) ≠ (𝑊‘0)))) |
| 27 | 26 | 3imp31 1111 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘1) ≠ (𝑊‘0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 {cpr 4594 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 − cmin 11412 ℕcn 12193 2c2 12248 ℤ≥cuz 12800 ..^cfzo 13622 ♯chash 14302 Word cword 14485 lastSclsw 14534 Vtxcvtx 28930 Edgcedg 28981 UMGraphcumgr 29015 ClWWalksN cclwwlkn 29960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-edg 28982 df-umgr 29017 df-clwwlk 29918 df-clwwlkn 29961 |
| This theorem is referenced by: umgr2cwwkdifex 30001 |
| Copyright terms: Public domain | W3C validator |