Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > umgr2cwwk2dif | Structured version Visualization version GIF version |
Description: If a word represents a closed walk of length at least 2 in a multigraph, the first two symbols of the word must be different. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 30-Apr-2021.) |
Ref | Expression |
---|---|
umgr2cwwk2dif | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘1) ≠ (𝑊‘0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2736 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | clwwlknp 28689 | . . 3 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) |
4 | simpr 485 | . . . . 5 ⊢ (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ 𝐺 ∈ UMGraph) → 𝐺 ∈ UMGraph) | |
5 | uz2m1nn 12764 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) | |
6 | lbfzo0 13528 | . . . . . . . . . . 11 ⊢ (0 ∈ (0..^(𝑁 − 1)) ↔ (𝑁 − 1) ∈ ℕ) | |
7 | 5, 6 | sylibr 233 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → 0 ∈ (0..^(𝑁 − 1))) |
8 | fveq2 6825 | . . . . . . . . . . . . 13 ⊢ (𝑖 = 0 → (𝑊‘𝑖) = (𝑊‘0)) | |
9 | 8 | adantl 482 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑖 = 0) → (𝑊‘𝑖) = (𝑊‘0)) |
10 | oveq1 7344 | . . . . . . . . . . . . . . 15 ⊢ (𝑖 = 0 → (𝑖 + 1) = (0 + 1)) | |
11 | 10 | adantl 482 | . . . . . . . . . . . . . 14 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑖 = 0) → (𝑖 + 1) = (0 + 1)) |
12 | 0p1e1 12196 | . . . . . . . . . . . . . 14 ⊢ (0 + 1) = 1 | |
13 | 11, 12 | eqtrdi 2792 | . . . . . . . . . . . . 13 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑖 = 0) → (𝑖 + 1) = 1) |
14 | 13 | fveq2d 6829 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑖 = 0) → (𝑊‘(𝑖 + 1)) = (𝑊‘1)) |
15 | 9, 14 | preq12d 4689 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑖 = 0) → {(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘0), (𝑊‘1)}) |
16 | 15 | eleq1d 2821 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑖 = 0) → ({(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) |
17 | 7, 16 | rspcdv 3562 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) |
18 | 17 | com12 32 | . . . . . . . 8 ⊢ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑁 ∈ (ℤ≥‘2) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) |
19 | 18 | 3ad2ant2 1133 | . . . . . . 7 ⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (ℤ≥‘2) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) |
20 | 19 | imp 407 | . . . . . 6 ⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ≥‘2)) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) |
21 | 20 | adantr 481 | . . . . 5 ⊢ (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ 𝐺 ∈ UMGraph) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) |
22 | 2 | umgredgne 27804 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) → (𝑊‘0) ≠ (𝑊‘1)) |
23 | 22 | necomd 2996 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) → (𝑊‘1) ≠ (𝑊‘0)) |
24 | 4, 21, 23 | syl2anc 584 | . . . 4 ⊢ (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ≥‘2)) ∧ 𝐺 ∈ UMGraph) → (𝑊‘1) ≠ (𝑊‘0)) |
25 | 24 | exp31 420 | . . 3 ⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (ℤ≥‘2) → (𝐺 ∈ UMGraph → (𝑊‘1) ≠ (𝑊‘0)))) |
26 | 3, 25 | syl 17 | . 2 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ (ℤ≥‘2) → (𝐺 ∈ UMGraph → (𝑊‘1) ≠ (𝑊‘0)))) |
27 | 26 | 3imp31 1111 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘1) ≠ (𝑊‘0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∀wral 3061 {cpr 4575 ‘cfv 6479 (class class class)co 7337 0cc0 10972 1c1 10973 + caddc 10975 − cmin 11306 ℕcn 12074 2c2 12129 ℤ≥cuz 12683 ..^cfzo 13483 ♯chash 14145 Word cword 14317 lastSclsw 14365 Vtxcvtx 27655 Edgcedg 27706 UMGraphcumgr 27740 ClWWalksN cclwwlkn 28676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-oadd 8371 df-er 8569 df-map 8688 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-dju 9758 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-n0 12335 df-xnn0 12407 df-z 12421 df-uz 12684 df-fz 13341 df-fzo 13484 df-hash 14146 df-word 14318 df-edg 27707 df-umgr 27742 df-clwwlk 28634 df-clwwlkn 28677 |
This theorem is referenced by: umgr2cwwkdifex 28717 |
Copyright terms: Public domain | W3C validator |