MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2cwwk2dif Structured version   Visualization version   GIF version

Theorem umgr2cwwk2dif 28119
Description: If a word represents a closed walk of length at least 2 in a multigraph, the first two symbols of the word must be different. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 30-Apr-2021.)
Assertion
Ref Expression
umgr2cwwk2dif ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘1) ≠ (𝑊‘0))

Proof of Theorem umgr2cwwk2dif
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2734 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2clwwlknp 28092 . . 3 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
4 simpr 488 . . . . 5 (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝐺 ∈ UMGraph) → 𝐺 ∈ UMGraph)
5 uz2m1nn 12502 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
6 lbfzo0 13265 . . . . . . . . . . 11 (0 ∈ (0..^(𝑁 − 1)) ↔ (𝑁 − 1) ∈ ℕ)
75, 6sylibr 237 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 0 ∈ (0..^(𝑁 − 1)))
8 fveq2 6706 . . . . . . . . . . . . 13 (𝑖 = 0 → (𝑊𝑖) = (𝑊‘0))
98adantl 485 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → (𝑊𝑖) = (𝑊‘0))
10 oveq1 7209 . . . . . . . . . . . . . . 15 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
1110adantl 485 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → (𝑖 + 1) = (0 + 1))
12 0p1e1 11935 . . . . . . . . . . . . . 14 (0 + 1) = 1
1311, 12eqtrdi 2790 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → (𝑖 + 1) = 1)
1413fveq2d 6710 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → (𝑊‘(𝑖 + 1)) = (𝑊‘1))
159, 14preq12d 4647 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘0), (𝑊‘1)})
1615eleq1d 2818 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
177, 16rspcdv 3522 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
1817com12 32 . . . . . . . 8 (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑁 ∈ (ℤ‘2) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
19183ad2ant2 1136 . . . . . . 7 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (ℤ‘2) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
2019imp 410 . . . . . 6 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ‘2)) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))
2120adantr 484 . . . . 5 (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝐺 ∈ UMGraph) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))
222umgredgne 27208 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) → (𝑊‘0) ≠ (𝑊‘1))
2322necomd 2990 . . . . 5 ((𝐺 ∈ UMGraph ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) → (𝑊‘1) ≠ (𝑊‘0))
244, 21, 23syl2anc 587 . . . 4 (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝐺 ∈ UMGraph) → (𝑊‘1) ≠ (𝑊‘0))
2524exp31 423 . . 3 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (ℤ‘2) → (𝐺 ∈ UMGraph → (𝑊‘1) ≠ (𝑊‘0))))
263, 25syl 17 . 2 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ (ℤ‘2) → (𝐺 ∈ UMGraph → (𝑊‘1) ≠ (𝑊‘0))))
27263imp31 1114 1 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘1) ≠ (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2935  wral 3054  {cpr 4533  cfv 6369  (class class class)co 7202  0cc0 10712  1c1 10713   + caddc 10715  cmin 11045  cn 11813  2c2 11868  cuz 12421  ..^cfzo 13221  chash 13879  Word cword 14052  lastSclsw 14100  Vtxcvtx 27059  Edgcedg 27110  UMGraphcumgr 27144   ClWWalksN cclwwlkn 28079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-oadd 8195  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-fz 13079  df-fzo 13222  df-hash 13880  df-word 14053  df-edg 27111  df-umgr 27146  df-clwwlk 28037  df-clwwlkn 28080
This theorem is referenced by:  umgr2cwwkdifex  28120
  Copyright terms: Public domain W3C validator