MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2cwwk2dif Structured version   Visualization version   GIF version

Theorem umgr2cwwk2dif 27842
Description: If a word represents a closed walk of length at least 2 in a multigraph, the first two symbols of the word must be different. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 30-Apr-2021.)
Assertion
Ref Expression
umgr2cwwk2dif ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘1) ≠ (𝑊‘0))

Proof of Theorem umgr2cwwk2dif
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2821 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2clwwlknp 27814 . . 3 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
4 simpr 487 . . . . 5 (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝐺 ∈ UMGraph) → 𝐺 ∈ UMGraph)
5 uz2m1nn 12322 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
6 lbfzo0 13076 . . . . . . . . . . 11 (0 ∈ (0..^(𝑁 − 1)) ↔ (𝑁 − 1) ∈ ℕ)
75, 6sylibr 236 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 0 ∈ (0..^(𝑁 − 1)))
8 fveq2 6669 . . . . . . . . . . . . 13 (𝑖 = 0 → (𝑊𝑖) = (𝑊‘0))
98adantl 484 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → (𝑊𝑖) = (𝑊‘0))
10 oveq1 7162 . . . . . . . . . . . . . . 15 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
1110adantl 484 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → (𝑖 + 1) = (0 + 1))
12 0p1e1 11758 . . . . . . . . . . . . . 14 (0 + 1) = 1
1311, 12syl6eq 2872 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → (𝑖 + 1) = 1)
1413fveq2d 6673 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → (𝑊‘(𝑖 + 1)) = (𝑊‘1))
159, 14preq12d 4676 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘0), (𝑊‘1)})
1615eleq1d 2897 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑖 = 0) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
177, 16rspcdv 3614 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
1817com12 32 . . . . . . . 8 (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑁 ∈ (ℤ‘2) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
19183ad2ant2 1130 . . . . . . 7 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (ℤ‘2) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
2019imp 409 . . . . . 6 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ‘2)) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))
2120adantr 483 . . . . 5 (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝐺 ∈ UMGraph) → {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))
222umgredgne 26929 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) → (𝑊‘0) ≠ (𝑊‘1))
2322necomd 3071 . . . . 5 ((𝐺 ∈ UMGraph ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) → (𝑊‘1) ≠ (𝑊‘0))
244, 21, 23syl2anc 586 . . . 4 (((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝐺 ∈ UMGraph) → (𝑊‘1) ≠ (𝑊‘0))
2524exp31 422 . . 3 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (ℤ‘2) → (𝐺 ∈ UMGraph → (𝑊‘1) ≠ (𝑊‘0))))
263, 25syl 17 . 2 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ (ℤ‘2) → (𝐺 ∈ UMGraph → (𝑊‘1) ≠ (𝑊‘0))))
27263imp31 1108 1 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ (ℤ‘2) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘1) ≠ (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  {cpr 4568  cfv 6354  (class class class)co 7155  0cc0 10536  1c1 10537   + caddc 10539  cmin 10869  cn 11637  2c2 11691  cuz 12242  ..^cfzo 13032  chash 13689  Word cword 13860  lastSclsw 13913  Vtxcvtx 26780  Edgcedg 26831  UMGraphcumgr 26865   ClWWalksN cclwwlkn 27801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-dju 9329  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-n0 11897  df-xnn0 11967  df-z 11981  df-uz 12243  df-fz 12892  df-fzo 13033  df-hash 13690  df-word 13861  df-edg 26832  df-umgr 26867  df-clwwlk 27759  df-clwwlkn 27802
This theorem is referenced by:  umgr2cwwkdifex  27843
  Copyright terms: Public domain W3C validator