|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 3jaobOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of 3jaob 1427 as of 29-Jun-2025. (Contributed by NM, 13-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| 3jaobOLD | ⊢ (((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3mix1 1330 | . . . 4 ⊢ (𝜑 → (𝜑 ∨ 𝜒 ∨ 𝜃)) | |
| 2 | 1 | imim1i 63 | . . 3 ⊢ (((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) → (𝜑 → 𝜓)) | 
| 3 | 3mix2 1331 | . . . 4 ⊢ (𝜒 → (𝜑 ∨ 𝜒 ∨ 𝜃)) | |
| 4 | 3 | imim1i 63 | . . 3 ⊢ (((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) → (𝜒 → 𝜓)) | 
| 5 | 3mix3 1332 | . . . 4 ⊢ (𝜃 → (𝜑 ∨ 𝜒 ∨ 𝜃)) | |
| 6 | 5 | imim1i 63 | . . 3 ⊢ (((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) → (𝜃 → 𝜓)) | 
| 7 | 2, 4, 6 | 3jca 1128 | . 2 ⊢ (((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) → ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓))) | 
| 8 | 3jao 1426 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) | |
| 9 | 7, 8 | impbii 209 | 1 ⊢ (((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∨ w3o 1085 ∧ w3a 1086 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |