| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3r19.43 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.43 1882 for a triple disjunction . (Contributed by AV, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| 3r19.43 | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓 ∨ ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or 1087 | . . 3 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 2 | 1 | rexbii 3083 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ∃𝑥 ∈ 𝐴 ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
| 3 | r19.43 3108 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ∨ ∃𝑥 ∈ 𝐴 𝜒)) | |
| 4 | r19.43 3108 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | |
| 5 | 4 | orbi1i 913 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ∨ ∃𝑥 ∈ 𝐴 𝜒) ↔ ((∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓) ∨ ∃𝑥 ∈ 𝐴 𝜒)) |
| 6 | df-3or 1087 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓 ∨ ∃𝑥 ∈ 𝐴 𝜒) ↔ ((∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓) ∨ ∃𝑥 ∈ 𝐴 𝜒)) | |
| 7 | 5, 6 | bitr4i 278 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ∨ ∃𝑥 ∈ 𝐴 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓 ∨ ∃𝑥 ∈ 𝐴 𝜒)) |
| 8 | 2, 3, 7 | 3bitri 297 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓 ∨ ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-ex 1780 df-ral 3052 df-rex 3061 |
| This theorem is referenced by: gpgprismgriedgdmss 48004 |
| Copyright terms: Public domain | W3C validator |