MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3r19.43 Structured version   Visualization version   GIF version

Theorem 3r19.43 3109
Description: Restricted quantifier version of 19.43 1882 for a triple disjunction . (Contributed by AV, 2-Nov-2025.)
Assertion
Ref Expression
3r19.43 (∃𝑥𝐴 (𝜑𝜓𝜒) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓 ∨ ∃𝑥𝐴 𝜒))

Proof of Theorem 3r19.43
StepHypRef Expression
1 df-3or 1087 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
21rexbii 3083 . 2 (∃𝑥𝐴 (𝜑𝜓𝜒) ↔ ∃𝑥𝐴 ((𝜑𝜓) ∨ 𝜒))
3 r19.43 3108 . 2 (∃𝑥𝐴 ((𝜑𝜓) ∨ 𝜒) ↔ (∃𝑥𝐴 (𝜑𝜓) ∨ ∃𝑥𝐴 𝜒))
4 r19.43 3108 . . . 4 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
54orbi1i 913 . . 3 ((∃𝑥𝐴 (𝜑𝜓) ∨ ∃𝑥𝐴 𝜒) ↔ ((∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓) ∨ ∃𝑥𝐴 𝜒))
6 df-3or 1087 . . 3 ((∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓 ∨ ∃𝑥𝐴 𝜒) ↔ ((∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓) ∨ ∃𝑥𝐴 𝜒))
75, 6bitr4i 278 . 2 ((∃𝑥𝐴 (𝜑𝜓) ∨ ∃𝑥𝐴 𝜒) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓 ∨ ∃𝑥𝐴 𝜒))
82, 3, 73bitri 297 1 (∃𝑥𝐴 (𝜑𝜓𝜒) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓 ∨ ∃𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847  w3o 1085  wrex 3060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-ex 1780  df-ral 3052  df-rex 3061
This theorem is referenced by:  gpgprismgriedgdmss  48004
  Copyright terms: Public domain W3C validator