MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ralimi Structured version   Visualization version   GIF version

Theorem 2ralimi 3121
Description: Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.)
Hypothesis
Ref Expression
2ralimi.1 (𝜑𝜓)
Assertion
Ref Expression
2ralimi (∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)

Proof of Theorem 2ralimi
StepHypRef Expression
1 2ralimi.1 . . 3 (𝜑𝜓)
21ralimi 3081 . 2 (∀𝑦𝐵 𝜑 → ∀𝑦𝐵 𝜓)
32ralimi 3081 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806
This theorem depends on definitions:  df-bi 207  df-ral 3060
This theorem is referenced by:  3ralimi  3122  reusv3i  5410  ssrel2  5798  fununi  6643  fnmpo  8093  xpwdomg  9623  catcocl  17730  catpropd  17754  dfgrp3e  19071  rmodislmodlem  20944  rmodislmod  20945  rmodislmodOLD  20946  tmdcn2  24113  xmeteq0  24364  xmettri2  24366  mulsuniflem  28190  midf  28799  frgrconngr  30323  ajmoi  30887  adjmo  31861  cnlnssadj  32109  prmidl2  33449  rngodi  37891  rngodir  37892  rngoass  37893  rngohomadd  37956  rngohommul  37957  ispridl2  38025  mpobi123f  38149  ntrk2imkb  44027  gneispaceel  44133  gneispacess  44135  prclaxpr  44948  stoweidlem60  46016  fullthinc  48846  thincciso  48849
  Copyright terms: Public domain W3C validator