Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ralimi | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.) |
Ref | Expression |
---|---|
ralimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2ralimi | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | ralimi 3087 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 𝜓) |
3 | 2 | ralimi 3087 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ral 3069 |
This theorem is referenced by: reusv3i 5327 ssrel2 5696 fununi 6509 fnmpo 7909 xpwdomg 9344 catcocl 17394 catpropd 17418 dfgrp3e 18675 rmodislmodlem 20190 rmodislmod 20191 rmodislmodOLD 20192 tmdcn2 23240 xmeteq0 23491 xmettri2 23493 midf 27137 frgrconngr 28658 ajmoi 29220 adjmo 30194 cnlnssadj 30442 prmidl2 31616 xpord3ind 33800 rngodi 36062 rngodir 36063 rngoass 36064 rngohomadd 36127 rngohommul 36128 ispridl2 36196 mpobi123f 36320 ntrk2imkb 41647 gneispaceel 41753 gneispacess 41755 stoweidlem60 43601 fullthinc 46327 thincciso 46330 |
Copyright terms: Public domain | W3C validator |