| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralimi | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.) |
| Ref | Expression |
|---|---|
| 2ralimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2ralimi | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | ralimi 3070 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | ralimi 3070 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wral 3048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ral 3049 |
| This theorem is referenced by: 3ralimi 3104 reusv3i 5344 ssrel2 5729 fununi 6561 fnmpo 8007 xpwdomg 9478 catcocl 17593 catpropd 17617 dfgrp3e 18955 rmodislmodlem 20864 rmodislmod 20865 tmdcn2 24005 xmeteq0 24254 xmettri2 24256 mulsuniflem 28089 midf 28755 frgrconngr 30276 ajmoi 30840 adjmo 31814 cnlnssadj 32062 prmidl2 33413 rngodi 37964 rngodir 37965 rngoass 37966 rngohomadd 38029 rngohommul 38030 ispridl2 38098 mpobi123f 38222 ntrk2imkb 44154 gneispaceel 44260 gneispacess 44262 prclaxpr 45102 stoweidlem60 46182 fullthinc 49575 thincciso 49578 |
| Copyright terms: Public domain | W3C validator |