![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralimi | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.) |
Ref | Expression |
---|---|
2ralimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2ralimi | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | ralimi 3084 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 𝜓) |
3 | 2 | ralimi 3084 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ral 3063 |
This theorem is referenced by: 3ralimi 3125 reusv3i 5403 ssrel2 5786 fununi 6624 fnmpo 8055 xpwdomg 9580 catcocl 17629 catpropd 17653 dfgrp3e 18923 rmodislmodlem 20539 rmodislmod 20540 rmodislmodOLD 20541 tmdcn2 23593 xmeteq0 23844 xmettri2 23846 mulsuniflem 27607 midf 28058 frgrconngr 29578 ajmoi 30142 adjmo 31116 cnlnssadj 31364 prmidl2 32590 rngodi 36820 rngodir 36821 rngoass 36822 rngohomadd 36885 rngohommul 36886 ispridl2 36954 mpobi123f 37078 ntrk2imkb 42836 gneispaceel 42942 gneispacess 42944 stoweidlem60 44824 fullthinc 47714 thincciso 47717 |
Copyright terms: Public domain | W3C validator |