| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralimi | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.) |
| Ref | Expression |
|---|---|
| 2ralimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2ralimi | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | ralimi 3074 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | ralimi 3074 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3053 |
| This theorem is referenced by: 3ralimi 3112 reusv3i 5379 ssrel2 5769 fununi 6616 fnmpo 8073 xpwdomg 9604 catcocl 17702 catpropd 17726 dfgrp3e 19028 rmodislmodlem 20891 rmodislmod 20892 tmdcn2 24032 xmeteq0 24282 xmettri2 24284 mulsuniflem 28109 midf 28760 frgrconngr 30280 ajmoi 30844 adjmo 31818 cnlnssadj 32066 prmidl2 33461 rngodi 37933 rngodir 37934 rngoass 37935 rngohomadd 37998 rngohommul 37999 ispridl2 38067 mpobi123f 38191 ntrk2imkb 44028 gneispaceel 44134 gneispacess 44136 prclaxpr 44977 stoweidlem60 46056 fullthinc 49303 thincciso 49306 |
| Copyright terms: Public domain | W3C validator |