![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralimi | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.) |
Ref | Expression |
---|---|
2ralimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2ralimi | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | ralimi 3081 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 𝜓) |
3 | 2 | ralimi 3081 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-ral 3060 |
This theorem is referenced by: 3ralimi 3122 reusv3i 5410 ssrel2 5798 fununi 6643 fnmpo 8093 xpwdomg 9623 catcocl 17730 catpropd 17754 dfgrp3e 19071 rmodislmodlem 20944 rmodislmod 20945 rmodislmodOLD 20946 tmdcn2 24113 xmeteq0 24364 xmettri2 24366 mulsuniflem 28190 midf 28799 frgrconngr 30323 ajmoi 30887 adjmo 31861 cnlnssadj 32109 prmidl2 33449 rngodi 37891 rngodir 37892 rngoass 37893 rngohomadd 37956 rngohommul 37957 ispridl2 38025 mpobi123f 38149 ntrk2imkb 44027 gneispaceel 44133 gneispacess 44135 prclaxpr 44948 stoweidlem60 46016 fullthinc 48846 thincciso 48849 |
Copyright terms: Public domain | W3C validator |