MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ralimi Structured version   Visualization version   GIF version

Theorem 2ralimi 3111
Description: Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.)
Hypothesis
Ref Expression
2ralimi.1 (𝜑𝜓)
Assertion
Ref Expression
2ralimi (∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)

Proof of Theorem 2ralimi
StepHypRef Expression
1 2ralimi.1 . . 3 (𝜑𝜓)
21ralimi 3074 . 2 (∀𝑦𝐵 𝜑 → ∀𝑦𝐵 𝜓)
32ralimi 3074 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 3052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ral 3053
This theorem is referenced by:  3ralimi  3112  reusv3i  5379  ssrel2  5769  fununi  6616  fnmpo  8073  xpwdomg  9604  catcocl  17702  catpropd  17726  dfgrp3e  19028  rmodislmodlem  20891  rmodislmod  20892  tmdcn2  24032  xmeteq0  24282  xmettri2  24284  mulsuniflem  28109  midf  28760  frgrconngr  30280  ajmoi  30844  adjmo  31818  cnlnssadj  32066  prmidl2  33461  rngodi  37933  rngodir  37934  rngoass  37935  rngohomadd  37998  rngohommul  37999  ispridl2  38067  mpobi123f  38191  ntrk2imkb  44028  gneispaceel  44134  gneispacess  44136  prclaxpr  44977  stoweidlem60  46056  fullthinc  49303  thincciso  49306
  Copyright terms: Public domain W3C validator