![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralimi | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.) |
Ref | Expression |
---|---|
2ralimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2ralimi | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | ralimi 3084 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 𝜓) |
3 | 2 | ralimi 3084 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ral 3063 |
This theorem is referenced by: 3ralimi 3125 reusv3i 5403 ssrel2 5786 fununi 6624 fnmpo 8055 xpwdomg 9580 catcocl 17629 catpropd 17653 dfgrp3e 18923 rmodislmodlem 20539 rmodislmod 20540 rmodislmodOLD 20541 tmdcn2 23593 xmeteq0 23844 xmettri2 23846 mulsuniflem 27604 midf 28027 frgrconngr 29547 ajmoi 30111 adjmo 31085 cnlnssadj 31333 prmidl2 32559 rngodi 36772 rngodir 36773 rngoass 36774 rngohomadd 36837 rngohommul 36838 ispridl2 36906 mpobi123f 37030 ntrk2imkb 42788 gneispaceel 42894 gneispacess 42896 stoweidlem60 44776 fullthinc 47666 thincciso 47669 |
Copyright terms: Public domain | W3C validator |