| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralimi | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.) |
| Ref | Expression |
|---|---|
| 2ralimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2ralimi | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | ralimi 3066 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | ralimi 3066 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: 3ralimi 3100 reusv3i 5346 ssrel2 5732 fununi 6561 fnmpo 8011 xpwdomg 9496 catcocl 17609 catpropd 17633 dfgrp3e 18937 rmodislmodlem 20850 rmodislmod 20851 tmdcn2 23992 xmeteq0 24242 xmettri2 24244 mulsuniflem 28075 midf 28739 frgrconngr 30256 ajmoi 30820 adjmo 31794 cnlnssadj 32042 prmidl2 33388 rngodi 37883 rngodir 37884 rngoass 37885 rngohomadd 37948 rngohommul 37949 ispridl2 38017 mpobi123f 38141 ntrk2imkb 44010 gneispaceel 44116 gneispacess 44118 prclaxpr 44959 stoweidlem60 46042 fullthinc 49436 thincciso 49439 |
| Copyright terms: Public domain | W3C validator |