| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralimi | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.) |
| Ref | Expression |
|---|---|
| 2ralimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2ralimi | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | ralimi 3073 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | ralimi 3073 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3052 |
| This theorem is referenced by: 3ralimi 3111 reusv3i 5374 ssrel2 5764 fununi 6610 fnmpo 8066 xpwdomg 9597 catcocl 17695 catpropd 17719 dfgrp3e 19021 rmodislmodlem 20884 rmodislmod 20885 tmdcn2 24025 xmeteq0 24275 xmettri2 24277 mulsuniflem 28092 midf 28701 frgrconngr 30221 ajmoi 30785 adjmo 31759 cnlnssadj 32007 prmidl2 33402 rngodi 37874 rngodir 37875 rngoass 37876 rngohomadd 37939 rngohommul 37940 ispridl2 38008 mpobi123f 38132 ntrk2imkb 44008 gneispaceel 44114 gneispacess 44116 prclaxpr 44958 stoweidlem60 46037 fullthinc 49284 thincciso 49287 |
| Copyright terms: Public domain | W3C validator |