MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ralimi Structured version   Visualization version   GIF version

Theorem 2ralimi 3110
Description: Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.)
Hypothesis
Ref Expression
2ralimi.1 (𝜑𝜓)
Assertion
Ref Expression
2ralimi (∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)

Proof of Theorem 2ralimi
StepHypRef Expression
1 2ralimi.1 . . 3 (𝜑𝜓)
21ralimi 3073 . 2 (∀𝑦𝐵 𝜑 → ∀𝑦𝐵 𝜓)
32ralimi 3073 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 3051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ral 3052
This theorem is referenced by:  3ralimi  3111  reusv3i  5374  ssrel2  5764  fununi  6610  fnmpo  8066  xpwdomg  9597  catcocl  17695  catpropd  17719  dfgrp3e  19021  rmodislmodlem  20884  rmodislmod  20885  tmdcn2  24025  xmeteq0  24275  xmettri2  24277  mulsuniflem  28092  midf  28701  frgrconngr  30221  ajmoi  30785  adjmo  31759  cnlnssadj  32007  prmidl2  33402  rngodi  37874  rngodir  37875  rngoass  37876  rngohomadd  37939  rngohommul  37940  ispridl2  38008  mpobi123f  38132  ntrk2imkb  44008  gneispaceel  44114  gneispacess  44116  prclaxpr  44958  stoweidlem60  46037  fullthinc  49284  thincciso  49287
  Copyright terms: Public domain W3C validator