| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralimi | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.) |
| Ref | Expression |
|---|---|
| 2ralimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2ralimi | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | ralimi 3067 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | ralimi 3067 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3046 |
| This theorem is referenced by: 3ralimi 3105 reusv3i 5362 ssrel2 5751 fununi 6594 fnmpo 8051 xpwdomg 9545 catcocl 17653 catpropd 17677 dfgrp3e 18979 rmodislmodlem 20842 rmodislmod 20843 tmdcn2 23983 xmeteq0 24233 xmettri2 24235 mulsuniflem 28059 midf 28710 frgrconngr 30230 ajmoi 30794 adjmo 31768 cnlnssadj 32016 prmidl2 33419 rngodi 37905 rngodir 37906 rngoass 37907 rngohomadd 37970 rngohommul 37971 ispridl2 38039 mpobi123f 38163 ntrk2imkb 44033 gneispaceel 44139 gneispacess 44141 prclaxpr 44982 stoweidlem60 46065 fullthinc 49443 thincciso 49446 |
| Copyright terms: Public domain | W3C validator |