| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralimi | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.) |
| Ref | Expression |
|---|---|
| 2ralimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2ralimi | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | ralimi 3066 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | ralimi 3066 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: 3ralimi 3104 reusv3i 5359 ssrel2 5748 fununi 6591 fnmpo 8048 xpwdomg 9538 catcocl 17646 catpropd 17670 dfgrp3e 18972 rmodislmodlem 20835 rmodislmod 20836 tmdcn2 23976 xmeteq0 24226 xmettri2 24228 mulsuniflem 28052 midf 28703 frgrconngr 30223 ajmoi 30787 adjmo 31761 cnlnssadj 32009 prmidl2 33412 rngodi 37898 rngodir 37899 rngoass 37900 rngohomadd 37963 rngohommul 37964 ispridl2 38032 mpobi123f 38156 ntrk2imkb 44026 gneispaceel 44132 gneispacess 44134 prclaxpr 44975 stoweidlem60 46058 fullthinc 49439 thincciso 49442 |
| Copyright terms: Public domain | W3C validator |