![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralimi | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.) |
Ref | Expression |
---|---|
2ralimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2ralimi | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | ralimi 3089 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 𝜓) |
3 | 2 | ralimi 3089 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ral 3068 |
This theorem is referenced by: 3ralimi 3130 reusv3i 5422 ssrel2 5809 fununi 6653 fnmpo 8110 xpwdomg 9654 catcocl 17743 catpropd 17767 dfgrp3e 19080 rmodislmodlem 20949 rmodislmod 20950 rmodislmodOLD 20951 tmdcn2 24118 xmeteq0 24369 xmettri2 24371 mulsuniflem 28193 midf 28802 frgrconngr 30326 ajmoi 30890 adjmo 31864 cnlnssadj 32112 prmidl2 33434 rngodi 37864 rngodir 37865 rngoass 37866 rngohomadd 37929 rngohommul 37930 ispridl2 37998 mpobi123f 38122 ntrk2imkb 43999 gneispaceel 44105 gneispacess 44107 stoweidlem60 45981 fullthinc 48713 thincciso 48716 |
Copyright terms: Public domain | W3C validator |