Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ralimi | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.) |
Ref | Expression |
---|---|
ralimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2ralimi | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | ralimi 3086 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 𝜓) |
3 | 2 | ralimi 3086 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ral 3068 |
This theorem is referenced by: reusv3i 5322 ssrel2 5685 fununi 6493 fnmpo 7882 xpwdomg 9274 catcocl 17311 catpropd 17335 dfgrp3e 18590 rmodislmodlem 20105 rmodislmod 20106 rmodislmodOLD 20107 tmdcn2 23148 xmeteq0 23399 xmettri2 23401 midf 27041 frgrconngr 28559 ajmoi 29121 adjmo 30095 cnlnssadj 30343 prmidl2 31518 xpord3ind 33727 rngodi 35989 rngodir 35990 rngoass 35991 rngohomadd 36054 rngohommul 36055 ispridl2 36123 mpobi123f 36247 ntrk2imkb 41536 gneispaceel 41642 gneispacess 41644 stoweidlem60 43491 fullthinc 46215 thincciso 46218 |
Copyright terms: Public domain | W3C validator |