| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralimi | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.) |
| Ref | Expression |
|---|---|
| 2ralimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 2ralimi | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | ralimi 3069 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 𝜓) |
| 3 | 2 | ralimi 3069 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ral 3048 |
| This theorem is referenced by: 3ralimi 3103 reusv3i 5342 ssrel2 5725 fununi 6556 fnmpo 8001 xpwdomg 9471 catcocl 17588 catpropd 17612 dfgrp3e 18950 rmodislmodlem 20860 rmodislmod 20861 tmdcn2 24002 xmeteq0 24251 xmettri2 24253 mulsuniflem 28086 midf 28752 frgrconngr 30269 ajmoi 30833 adjmo 31807 cnlnssadj 32055 prmidl2 33401 rngodi 37943 rngodir 37944 rngoass 37945 rngohomadd 38008 rngohommul 38009 ispridl2 38077 mpobi123f 38201 ntrk2imkb 44069 gneispaceel 44175 gneispacess 44177 prclaxpr 45017 stoweidlem60 46097 fullthinc 49481 thincciso 49484 |
| Copyright terms: Public domain | W3C validator |