Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgprismgriedgdmss Structured version   Visualization version   GIF version

Theorem gpgprismgriedgdmss 48004
Description: A subset of the index of edges of the generalized Petersen graph GPG(N,1). (Contributed by AV, 2-Nov-2025.)
Assertion
Ref Expression
gpgprismgriedgdmss (𝑁 ∈ (ℤ‘3) → ({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 0⟩, ⟨1, 0⟩}} ∪ {{⟨1, 1⟩, ⟨0, 1⟩}, {⟨1, 1⟩, ⟨1, 0⟩}}) ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)))

Proof of Theorem gpgprismgriedgdmss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eluzge3nn 12904 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
2 lbfzo0 13714 . . . . . . . 8 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
31, 2sylibr 234 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 0 ∈ (0..^𝑁))
4 opeq2 4850 . . . . . . . . . 10 (𝑥 = 0 → ⟨0, 𝑥⟩ = ⟨0, 0⟩)
5 oveq1 7410 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥 + 1) = (0 + 1))
6 0p1e1 12360 . . . . . . . . . . . . 13 (0 + 1) = 1
75, 6eqtrdi 2786 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥 + 1) = 1)
87oveq1d 7418 . . . . . . . . . . 11 (𝑥 = 0 → ((𝑥 + 1) mod 𝑁) = (1 mod 𝑁))
98opeq2d 4856 . . . . . . . . . 10 (𝑥 = 0 → ⟨0, ((𝑥 + 1) mod 𝑁)⟩ = ⟨0, (1 mod 𝑁)⟩)
104, 9preq12d 4717 . . . . . . . . 9 (𝑥 = 0 → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} = {⟨0, 0⟩, ⟨0, (1 mod 𝑁)⟩})
1110eqeq2d 2746 . . . . . . . 8 (𝑥 = 0 → ({⟨0, 0⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ↔ {⟨0, 0⟩, ⟨0, 1⟩} = {⟨0, 0⟩, ⟨0, (1 mod 𝑁)⟩}))
1211adantl 481 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑥 = 0) → ({⟨0, 0⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ↔ {⟨0, 0⟩, ⟨0, 1⟩} = {⟨0, 0⟩, ⟨0, (1 mod 𝑁)⟩}))
13 uzuzle23 12903 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
14 eluz2b1 12933 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁))
15 zre 12590 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1615anim1i 615 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 ∈ ℝ ∧ 1 < 𝑁))
1714, 16sylbi 217 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑁 ∈ ℝ ∧ 1 < 𝑁))
18 1mod 13918 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
1913, 17, 183syl 18 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → (1 mod 𝑁) = 1)
2019eqcomd 2741 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 1 = (1 mod 𝑁))
2120opeq2d 4856 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → ⟨0, 1⟩ = ⟨0, (1 mod 𝑁)⟩)
2221preq2d 4716 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → {⟨0, 0⟩, ⟨0, 1⟩} = {⟨0, 0⟩, ⟨0, (1 mod 𝑁)⟩})
233, 12, 22rspcedvd 3603 . . . . . 6 (𝑁 ∈ (ℤ‘3) → ∃𝑥 ∈ (0..^𝑁){⟨0, 0⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩})
24233mix1d 1337 . . . . 5 (𝑁 ∈ (ℤ‘3) → (∃𝑥 ∈ (0..^𝑁){⟨0, 0⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ ∃𝑥 ∈ (0..^𝑁){⟨0, 0⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ ∃𝑥 ∈ (0..^𝑁){⟨0, 0⟩, ⟨0, 1⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩}))
25 3r19.43 3109 . . . . 5 (∃𝑥 ∈ (0..^𝑁)({⟨0, 0⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 0⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 0⟩, ⟨0, 1⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩}) ↔ (∃𝑥 ∈ (0..^𝑁){⟨0, 0⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ ∃𝑥 ∈ (0..^𝑁){⟨0, 0⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ ∃𝑥 ∈ (0..^𝑁){⟨0, 0⟩, ⟨0, 1⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩}))
2624, 25sylibr 234 . . . 4 (𝑁 ∈ (ℤ‘3) → ∃𝑥 ∈ (0..^𝑁)({⟨0, 0⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 0⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 0⟩, ⟨0, 1⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩}))
27 eqid 2735 . . . . 5 (0..^𝑁) = (0..^𝑁)
28 eqid 2735 . . . . 5 (𝑁 gPetersenGr 1) = (𝑁 gPetersenGr 1)
2927, 28gpgprismgriedgdmel 48003 . . . 4 (𝑁 ∈ (ℤ‘3) → ({⟨0, 0⟩, ⟨0, 1⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)) ↔ ∃𝑥 ∈ (0..^𝑁)({⟨0, 0⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 0⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 0⟩, ⟨0, 1⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩})))
3026, 29mpbird 257 . . 3 (𝑁 ∈ (ℤ‘3) → {⟨0, 0⟩, ⟨0, 1⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)))
31 opeq2 4850 . . . . . . . . . 10 (𝑥 = 0 → ⟨1, 𝑥⟩ = ⟨1, 0⟩)
324, 31preq12d 4717 . . . . . . . . 9 (𝑥 = 0 → {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} = {⟨0, 0⟩, ⟨1, 0⟩})
3332eqeq2d 2746 . . . . . . . 8 (𝑥 = 0 → ({⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 0⟩, ⟨1, 0⟩}))
3433adantl 481 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑥 = 0) → ({⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 0⟩, ⟨1, 0⟩}))
35 eqid 2735 . . . . . . . 8 {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
3635a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 0⟩, ⟨1, 0⟩})
373, 34, 36rspcedvd 3603 . . . . . 6 (𝑁 ∈ (ℤ‘3) → ∃𝑥 ∈ (0..^𝑁){⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩})
38373mix2d 1338 . . . . 5 (𝑁 ∈ (ℤ‘3) → (∃𝑥 ∈ (0..^𝑁){⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ ∃𝑥 ∈ (0..^𝑁){⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ ∃𝑥 ∈ (0..^𝑁){⟨0, 0⟩, ⟨1, 0⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩}))
39 3r19.43 3109 . . . . 5 (∃𝑥 ∈ (0..^𝑁)({⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 0⟩, ⟨1, 0⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩}) ↔ (∃𝑥 ∈ (0..^𝑁){⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ ∃𝑥 ∈ (0..^𝑁){⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ ∃𝑥 ∈ (0..^𝑁){⟨0, 0⟩, ⟨1, 0⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩}))
4038, 39sylibr 234 . . . 4 (𝑁 ∈ (ℤ‘3) → ∃𝑥 ∈ (0..^𝑁)({⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 0⟩, ⟨1, 0⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩}))
4127, 28gpgprismgriedgdmel 48003 . . . 4 (𝑁 ∈ (ℤ‘3) → ({⟨0, 0⟩, ⟨1, 0⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)) ↔ ∃𝑥 ∈ (0..^𝑁)({⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 0⟩, ⟨1, 0⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩})))
4240, 41mpbird 257 . . 3 (𝑁 ∈ (ℤ‘3) → {⟨0, 0⟩, ⟨1, 0⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)))
4330, 42prssd 4798 . 2 (𝑁 ∈ (ℤ‘3) → {{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 0⟩, ⟨1, 0⟩}} ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)))
44 1nn0 12515 . . . . . . . . 9 1 ∈ ℕ0
4544a1i 11 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 1 ∈ ℕ0)
46 eluz2gt1 12934 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
4713, 46syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 1 < 𝑁)
48 elfzo0 13715 . . . . . . . 8 (1 ∈ (0..^𝑁) ↔ (1 ∈ ℕ0𝑁 ∈ ℕ ∧ 1 < 𝑁))
4945, 1, 47, 48syl3anbrc 1344 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 1 ∈ (0..^𝑁))
50 opeq2 4850 . . . . . . . . . 10 (𝑥 = 1 → ⟨0, 𝑥⟩ = ⟨0, 1⟩)
51 opeq2 4850 . . . . . . . . . 10 (𝑥 = 1 → ⟨1, 𝑥⟩ = ⟨1, 1⟩)
5250, 51preq12d 4717 . . . . . . . . 9 (𝑥 = 1 → {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} = {⟨0, 1⟩, ⟨1, 1⟩})
5352eqeq2d 2746 . . . . . . . 8 (𝑥 = 1 → ({⟨1, 1⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ {⟨1, 1⟩, ⟨0, 1⟩} = {⟨0, 1⟩, ⟨1, 1⟩}))
5453adantl 481 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑥 = 1) → ({⟨1, 1⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ {⟨1, 1⟩, ⟨0, 1⟩} = {⟨0, 1⟩, ⟨1, 1⟩}))
55 prcom 4708 . . . . . . . 8 {⟨1, 1⟩, ⟨0, 1⟩} = {⟨0, 1⟩, ⟨1, 1⟩}
5655a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → {⟨1, 1⟩, ⟨0, 1⟩} = {⟨0, 1⟩, ⟨1, 1⟩})
5749, 54, 56rspcedvd 3603 . . . . . 6 (𝑁 ∈ (ℤ‘3) → ∃𝑥 ∈ (0..^𝑁){⟨1, 1⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩})
58573mix2d 1338 . . . . 5 (𝑁 ∈ (ℤ‘3) → (∃𝑥 ∈ (0..^𝑁){⟨1, 1⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ ∃𝑥 ∈ (0..^𝑁){⟨1, 1⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ ∃𝑥 ∈ (0..^𝑁){⟨1, 1⟩, ⟨0, 1⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩}))
59 3r19.43 3109 . . . . 5 (∃𝑥 ∈ (0..^𝑁)({⟨1, 1⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨1, 1⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨1, 1⟩, ⟨0, 1⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩}) ↔ (∃𝑥 ∈ (0..^𝑁){⟨1, 1⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ ∃𝑥 ∈ (0..^𝑁){⟨1, 1⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ ∃𝑥 ∈ (0..^𝑁){⟨1, 1⟩, ⟨0, 1⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩}))
6058, 59sylibr 234 . . . 4 (𝑁 ∈ (ℤ‘3) → ∃𝑥 ∈ (0..^𝑁)({⟨1, 1⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨1, 1⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨1, 1⟩, ⟨0, 1⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩}))
6127, 28gpgprismgriedgdmel 48003 . . . 4 (𝑁 ∈ (ℤ‘3) → ({⟨1, 1⟩, ⟨0, 1⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)) ↔ ∃𝑥 ∈ (0..^𝑁)({⟨1, 1⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨1, 1⟩, ⟨0, 1⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨1, 1⟩, ⟨0, 1⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩})))
6260, 61mpbird 257 . . 3 (𝑁 ∈ (ℤ‘3) → {⟨1, 1⟩, ⟨0, 1⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)))
638opeq2d 4856 . . . . . . . . . 10 (𝑥 = 0 → ⟨1, ((𝑥 + 1) mod 𝑁)⟩ = ⟨1, (1 mod 𝑁)⟩)
6431, 63preq12d 4717 . . . . . . . . 9 (𝑥 = 0 → {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩} = {⟨1, 0⟩, ⟨1, (1 mod 𝑁)⟩})
6564eqeq2d 2746 . . . . . . . 8 (𝑥 = 0 → ({⟨1, 1⟩, ⟨1, 0⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩} ↔ {⟨1, 1⟩, ⟨1, 0⟩} = {⟨1, 0⟩, ⟨1, (1 mod 𝑁)⟩}))
6665adantl 481 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑥 = 0) → ({⟨1, 1⟩, ⟨1, 0⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩} ↔ {⟨1, 1⟩, ⟨1, 0⟩} = {⟨1, 0⟩, ⟨1, (1 mod 𝑁)⟩}))
67 prcom 4708 . . . . . . . 8 {⟨1, 1⟩, ⟨1, 0⟩} = {⟨1, 0⟩, ⟨1, 1⟩}
6820opeq2d 4856 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → ⟨1, 1⟩ = ⟨1, (1 mod 𝑁)⟩)
6968preq2d 4716 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → {⟨1, 0⟩, ⟨1, 1⟩} = {⟨1, 0⟩, ⟨1, (1 mod 𝑁)⟩})
7067, 69eqtrid 2782 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → {⟨1, 1⟩, ⟨1, 0⟩} = {⟨1, 0⟩, ⟨1, (1 mod 𝑁)⟩})
713, 66, 70rspcedvd 3603 . . . . . 6 (𝑁 ∈ (ℤ‘3) → ∃𝑥 ∈ (0..^𝑁){⟨1, 1⟩, ⟨1, 0⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩})
72713mix3d 1339 . . . . 5 (𝑁 ∈ (ℤ‘3) → (∃𝑥 ∈ (0..^𝑁){⟨1, 1⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ ∃𝑥 ∈ (0..^𝑁){⟨1, 1⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ ∃𝑥 ∈ (0..^𝑁){⟨1, 1⟩, ⟨1, 0⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩}))
73 3r19.43 3109 . . . . 5 (∃𝑥 ∈ (0..^𝑁)({⟨1, 1⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨1, 1⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨1, 1⟩, ⟨1, 0⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩}) ↔ (∃𝑥 ∈ (0..^𝑁){⟨1, 1⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ ∃𝑥 ∈ (0..^𝑁){⟨1, 1⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ ∃𝑥 ∈ (0..^𝑁){⟨1, 1⟩, ⟨1, 0⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩}))
7472, 73sylibr 234 . . . 4 (𝑁 ∈ (ℤ‘3) → ∃𝑥 ∈ (0..^𝑁)({⟨1, 1⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨1, 1⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨1, 1⟩, ⟨1, 0⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩}))
7527, 28gpgprismgriedgdmel 48003 . . . 4 (𝑁 ∈ (ℤ‘3) → ({⟨1, 1⟩, ⟨1, 0⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)) ↔ ∃𝑥 ∈ (0..^𝑁)({⟨1, 1⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨1, 1⟩, ⟨1, 0⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨1, 1⟩, ⟨1, 0⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 1) mod 𝑁)⟩})))
7674, 75mpbird 257 . . 3 (𝑁 ∈ (ℤ‘3) → {⟨1, 1⟩, ⟨1, 0⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)))
7762, 76prssd 4798 . 2 (𝑁 ∈ (ℤ‘3) → {{⟨1, 1⟩, ⟨0, 1⟩}, {⟨1, 1⟩, ⟨1, 0⟩}} ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)))
7843, 77unssd 4167 1 (𝑁 ∈ (ℤ‘3) → ({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 0⟩, ⟨1, 0⟩}} ∪ {{⟨1, 1⟩, ⟨0, 1⟩}, {⟨1, 1⟩, ⟨1, 0⟩}}) ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2108  wrex 3060  cun 3924  wss 3926  {cpr 4603  cop 4607   class class class wbr 5119  dom cdm 5654  cfv 6530  (class class class)co 7403  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   < clt 11267  cn 12238  2c2 12293  3c3 12294  0cn0 12499  cz 12586  cuz 12850  ..^cfzo 13669   mod cmo 13884  iEdgciedg 28922   gPetersenGr cgpg 47992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-oadd 8482  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-rp 13007  df-ico 13366  df-fz 13523  df-fzo 13670  df-fl 13807  df-ceil 13808  df-mod 13885  df-hash 14347  df-struct 17164  df-slot 17199  df-ndx 17211  df-base 17227  df-edgf 28914  df-iedg 28924  df-gpg 47993
This theorem is referenced by:  gpgprismgr4cycllem8  48049
  Copyright terms: Public domain W3C validator