Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfss4 | Structured version Visualization version GIF version |
Description: Subclass defined in terms of class difference. See comments under dfun2 4193. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
dfss4 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqin2 4149 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) | |
2 | eldif 3897 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
3 | 2 | notbii 320 | . . . . . 6 ⊢ (¬ 𝑥 ∈ (𝐵 ∖ 𝐴) ↔ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
4 | 3 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
5 | elin 3903 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
6 | abai 824 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
7 | iman 402 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴) ↔ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
8 | 7 | anbi2i 623 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
9 | 5, 6, 8 | 3bitri 297 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
10 | 4, 9 | bitr4i 277 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ 𝑥 ∈ (𝐵 ∩ 𝐴)) |
11 | 10 | difeqri 4059 | . . 3 ⊢ (𝐵 ∖ (𝐵 ∖ 𝐴)) = (𝐵 ∩ 𝐴) |
12 | 11 | eqeq1i 2743 | . 2 ⊢ ((𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴 ↔ (𝐵 ∩ 𝐴) = 𝐴) |
13 | 1, 12 | bitr4i 277 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 |
This theorem is referenced by: ssdifim 4196 dfin4 4201 sscon34b 4228 sorpsscmpl 7587 sbthlem3 8872 fin23lem7 10072 fin23lem11 10073 compsscnvlem 10126 compssiso 10130 isf34lem4 10133 efgmnvl 19320 frlmlbs 21004 isopn2 22183 iincld 22190 iuncld 22196 clsval2 22201 ntrval2 22202 ntrdif 22203 clsdif 22204 cmclsopn 22213 opncldf1 22235 indiscld 22242 mretopd 22243 restcld 22323 pnrmopn 22494 conndisj 22567 hausllycmp 22645 kqcldsat 22884 filufint 23071 cfinufil 23079 ufilen 23081 alexsublem 23195 bcth3 24495 inmbl 24706 iccmbl 24730 mbfimaicc 24795 i1fd 24845 itgss3 24979 difuncomp 30893 iundifdifd 30901 iundifdif 30902 supppreima 31025 pmtrcnelor 31360 ist0cld 31783 cldssbrsiga 32155 unelcarsg 32279 kur14lem4 33171 cldbnd 34515 clsun 34517 mblfinlem3 35816 mblfinlem4 35817 ismblfin 35818 itg2addnclem 35828 fdc 35903 dssmapnvod 41628 ntrclsfveq1 41670 ntrclsfveq 41672 ntrclsneine0lem 41674 ntrclsiso 41677 ntrclsk2 41678 ntrclskb 41679 ntrclsk3 41680 ntrclsk13 41681 ntrclsk4 41682 clsneiel2 41719 neicvgel2 41730 salincl 43864 salexct 43873 ovnsubadd2lem 44183 lincext2 45796 opncldeqv 46195 |
Copyright terms: Public domain | W3C validator |