Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfss4 | Structured version Visualization version GIF version |
Description: Subclass defined in terms of class difference. See comments under dfun2 4190. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
dfss4 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqin2 4146 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) | |
2 | eldif 3893 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
3 | 2 | notbii 319 | . . . . . 6 ⊢ (¬ 𝑥 ∈ (𝐵 ∖ 𝐴) ↔ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
4 | 3 | anbi2i 622 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
5 | elin 3899 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
6 | abai 823 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
7 | iman 401 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴) ↔ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
8 | 7 | anbi2i 622 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
9 | 5, 6, 8 | 3bitri 296 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
10 | 4, 9 | bitr4i 277 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ 𝑥 ∈ (𝐵 ∩ 𝐴)) |
11 | 10 | difeqri 4055 | . . 3 ⊢ (𝐵 ∖ (𝐵 ∖ 𝐴)) = (𝐵 ∩ 𝐴) |
12 | 11 | eqeq1i 2743 | . 2 ⊢ ((𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴 ↔ (𝐵 ∩ 𝐴) = 𝐴) |
13 | 1, 12 | bitr4i 277 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 |
This theorem is referenced by: ssdifim 4193 dfin4 4198 sscon34b 4225 sorpsscmpl 7565 sbthlem3 8825 fin23lem7 10003 fin23lem11 10004 compsscnvlem 10057 compssiso 10061 isf34lem4 10064 efgmnvl 19235 frlmlbs 20914 isopn2 22091 iincld 22098 iuncld 22104 clsval2 22109 ntrval2 22110 ntrdif 22111 clsdif 22112 cmclsopn 22121 opncldf1 22143 indiscld 22150 mretopd 22151 restcld 22231 pnrmopn 22402 conndisj 22475 hausllycmp 22553 kqcldsat 22792 filufint 22979 cfinufil 22987 ufilen 22989 alexsublem 23103 bcth3 24400 inmbl 24611 iccmbl 24635 mbfimaicc 24700 i1fd 24750 itgss3 24884 difuncomp 30794 iundifdifd 30802 iundifdif 30803 supppreima 30927 pmtrcnelor 31262 ist0cld 31685 cldssbrsiga 32055 unelcarsg 32179 kur14lem4 33071 cldbnd 34442 clsun 34444 mblfinlem3 35743 mblfinlem4 35744 ismblfin 35745 itg2addnclem 35755 fdc 35830 dssmapnvod 41517 ntrclsfveq1 41559 ntrclsfveq 41561 ntrclsneine0lem 41563 ntrclsiso 41566 ntrclsk2 41567 ntrclskb 41568 ntrclsk3 41569 ntrclsk13 41570 ntrclsk4 41571 clsneiel2 41608 neicvgel2 41619 salincl 43754 salexct 43763 ovnsubadd2lem 44073 lincext2 45684 opncldeqv 46083 |
Copyright terms: Public domain | W3C validator |