MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss4 Structured version   Visualization version   GIF version

Theorem dfss4 4228
Description: Subclass defined in terms of class difference. See comments under dfun2 4229. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
dfss4 (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴)

Proof of Theorem dfss4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseqin2 4182 . 2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
2 eldif 3921 . . . . . . 7 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
32notbii 320 . . . . . 6 𝑥 ∈ (𝐵𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
43anbi2i 623 . . . . 5 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
5 elin 3927 . . . . . 6 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵𝑥𝐴))
6 abai 826 . . . . . 6 ((𝑥𝐵𝑥𝐴) ↔ (𝑥𝐵 ∧ (𝑥𝐵𝑥𝐴)))
7 iman 401 . . . . . . 7 ((𝑥𝐵𝑥𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
87anbi2i 623 . . . . . 6 ((𝑥𝐵 ∧ (𝑥𝐵𝑥𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
95, 6, 83bitri 297 . . . . 5 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
104, 9bitr4i 278 . . . 4 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ 𝑥 ∈ (𝐵𝐴))
1110difeqri 4087 . . 3 (𝐵 ∖ (𝐵𝐴)) = (𝐵𝐴)
1211eqeq1i 2734 . 2 ((𝐵 ∖ (𝐵𝐴)) = 𝐴 ↔ (𝐵𝐴) = 𝐴)
131, 12bitr4i 278 1 (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3908  cin 3910  wss 3911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-in 3918  df-ss 3928
This theorem is referenced by:  ssdifim  4232  dfin4  4237  sscon34b  4263  sorpsscmpl  7690  sbthlem3  9030  fin23lem7  10245  fin23lem11  10246  compsscnvlem  10299  compssiso  10303  isf34lem4  10306  efgmnvl  19620  frlmlbs  21682  isopn2  22895  iincld  22902  iuncld  22908  clsval2  22913  ntrval2  22914  ntrdif  22915  clsdif  22916  cmclsopn  22925  opncldf1  22947  indiscld  22954  mretopd  22955  restcld  23035  pnrmopn  23206  conndisj  23279  hausllycmp  23357  kqcldsat  23596  filufint  23783  cfinufil  23791  ufilen  23793  alexsublem  23907  bcth3  25207  inmbl  25419  iccmbl  25443  mbfimaicc  25508  i1fd  25558  itgss3  25692  difuncomp  32455  iundifdifd  32463  iundifdif  32464  supppreima  32587  pmtrcnelor  33021  ist0cld  33796  cldssbrsiga  34150  unelcarsg  34276  kur14lem4  35169  cldbnd  36287  clsun  36289  mblfinlem3  37626  mblfinlem4  37627  ismblfin  37628  itg2addnclem  37638  fdc  37712  dssmapnvod  43982  ntrclsfveq1  44022  ntrclsfveq  44024  ntrclsneine0lem  44026  ntrclsiso  44029  ntrclsk2  44030  ntrclskb  44031  ntrclsk3  44032  ntrclsk13  44033  ntrclsk4  44034  clsneiel2  44071  neicvgel2  44082  salincl  46295  salexct  46305  ovnsubadd2lem  46616  lincext2  48417  opncldeqv  48863
  Copyright terms: Public domain W3C validator