MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss4 Structured version   Visualization version   GIF version

Theorem dfss4 4192
Description: Subclass defined in terms of class difference. See comments under dfun2 4193. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
dfss4 (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴)

Proof of Theorem dfss4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseqin2 4149 . 2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
2 eldif 3897 . . . . . . 7 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
32notbii 320 . . . . . 6 𝑥 ∈ (𝐵𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
43anbi2i 623 . . . . 5 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
5 elin 3903 . . . . . 6 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵𝑥𝐴))
6 abai 824 . . . . . 6 ((𝑥𝐵𝑥𝐴) ↔ (𝑥𝐵 ∧ (𝑥𝐵𝑥𝐴)))
7 iman 402 . . . . . . 7 ((𝑥𝐵𝑥𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
87anbi2i 623 . . . . . 6 ((𝑥𝐵 ∧ (𝑥𝐵𝑥𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
95, 6, 83bitri 297 . . . . 5 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
104, 9bitr4i 277 . . . 4 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ 𝑥 ∈ (𝐵𝐴))
1110difeqri 4059 . . 3 (𝐵 ∖ (𝐵𝐴)) = (𝐵𝐴)
1211eqeq1i 2743 . 2 ((𝐵 ∖ (𝐵𝐴)) = 𝐴 ↔ (𝐵𝐴) = 𝐴)
131, 12bitr4i 277 1 (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cdif 3884  cin 3886  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904
This theorem is referenced by:  ssdifim  4196  dfin4  4201  sscon34b  4228  sorpsscmpl  7587  sbthlem3  8872  fin23lem7  10072  fin23lem11  10073  compsscnvlem  10126  compssiso  10130  isf34lem4  10133  efgmnvl  19320  frlmlbs  21004  isopn2  22183  iincld  22190  iuncld  22196  clsval2  22201  ntrval2  22202  ntrdif  22203  clsdif  22204  cmclsopn  22213  opncldf1  22235  indiscld  22242  mretopd  22243  restcld  22323  pnrmopn  22494  conndisj  22567  hausllycmp  22645  kqcldsat  22884  filufint  23071  cfinufil  23079  ufilen  23081  alexsublem  23195  bcth3  24495  inmbl  24706  iccmbl  24730  mbfimaicc  24795  i1fd  24845  itgss3  24979  difuncomp  30893  iundifdifd  30901  iundifdif  30902  supppreima  31025  pmtrcnelor  31360  ist0cld  31783  cldssbrsiga  32155  unelcarsg  32279  kur14lem4  33171  cldbnd  34515  clsun  34517  mblfinlem3  35816  mblfinlem4  35817  ismblfin  35818  itg2addnclem  35828  fdc  35903  dssmapnvod  41628  ntrclsfveq1  41670  ntrclsfveq  41672  ntrclsneine0lem  41674  ntrclsiso  41677  ntrclsk2  41678  ntrclskb  41679  ntrclsk3  41680  ntrclsk13  41681  ntrclsk4  41682  clsneiel2  41719  neicvgel2  41730  salincl  43864  salexct  43873  ovnsubadd2lem  44183  lincext2  45796  opncldeqv  46195
  Copyright terms: Public domain W3C validator