MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss4 Structured version   Visualization version   GIF version

Theorem dfss4 4189
Description: Subclass defined in terms of class difference. See comments under dfun2 4190. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
dfss4 (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴)

Proof of Theorem dfss4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseqin2 4146 . 2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
2 eldif 3893 . . . . . . 7 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
32notbii 319 . . . . . 6 𝑥 ∈ (𝐵𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
43anbi2i 622 . . . . 5 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
5 elin 3899 . . . . . 6 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵𝑥𝐴))
6 abai 823 . . . . . 6 ((𝑥𝐵𝑥𝐴) ↔ (𝑥𝐵 ∧ (𝑥𝐵𝑥𝐴)))
7 iman 401 . . . . . . 7 ((𝑥𝐵𝑥𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
87anbi2i 622 . . . . . 6 ((𝑥𝐵 ∧ (𝑥𝐵𝑥𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
95, 6, 83bitri 296 . . . . 5 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
104, 9bitr4i 277 . . . 4 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ 𝑥 ∈ (𝐵𝐴))
1110difeqri 4055 . . 3 (𝐵 ∖ (𝐵𝐴)) = (𝐵𝐴)
1211eqeq1i 2743 . 2 ((𝐵 ∖ (𝐵𝐴)) = 𝐴 ↔ (𝐵𝐴) = 𝐴)
131, 12bitr4i 277 1 (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cdif 3880  cin 3882  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900
This theorem is referenced by:  ssdifim  4193  dfin4  4198  sscon34b  4225  sorpsscmpl  7565  sbthlem3  8825  fin23lem7  10003  fin23lem11  10004  compsscnvlem  10057  compssiso  10061  isf34lem4  10064  efgmnvl  19235  frlmlbs  20914  isopn2  22091  iincld  22098  iuncld  22104  clsval2  22109  ntrval2  22110  ntrdif  22111  clsdif  22112  cmclsopn  22121  opncldf1  22143  indiscld  22150  mretopd  22151  restcld  22231  pnrmopn  22402  conndisj  22475  hausllycmp  22553  kqcldsat  22792  filufint  22979  cfinufil  22987  ufilen  22989  alexsublem  23103  bcth3  24400  inmbl  24611  iccmbl  24635  mbfimaicc  24700  i1fd  24750  itgss3  24884  difuncomp  30794  iundifdifd  30802  iundifdif  30803  supppreima  30927  pmtrcnelor  31262  ist0cld  31685  cldssbrsiga  32055  unelcarsg  32179  kur14lem4  33071  cldbnd  34442  clsun  34444  mblfinlem3  35743  mblfinlem4  35744  ismblfin  35745  itg2addnclem  35755  fdc  35830  dssmapnvod  41517  ntrclsfveq1  41559  ntrclsfveq  41561  ntrclsneine0lem  41563  ntrclsiso  41566  ntrclsk2  41567  ntrclskb  41568  ntrclsk3  41569  ntrclsk13  41570  ntrclsk4  41571  clsneiel2  41608  neicvgel2  41619  salincl  43754  salexct  43763  ovnsubadd2lem  44073  lincext2  45684  opncldeqv  46083
  Copyright terms: Public domain W3C validator