| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfss4 | Structured version Visualization version GIF version | ||
| Description: Subclass defined in terms of class difference. See comments under dfun2 4215. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| dfss4 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqin2 4168 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) | |
| 2 | eldif 3907 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 3 | 2 | notbii 320 | . . . . . 6 ⊢ (¬ 𝑥 ∈ (𝐵 ∖ 𝐴) ↔ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
| 4 | 3 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 5 | elin 3913 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 6 | abai 826 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
| 7 | iman 401 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴) ↔ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 8 | 7 | anbi2i 623 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 9 | 5, 6, 8 | 3bitri 297 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 10 | 4, 9 | bitr4i 278 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ 𝑥 ∈ (𝐵 ∩ 𝐴)) |
| 11 | 10 | difeqri 4073 | . . 3 ⊢ (𝐵 ∖ (𝐵 ∖ 𝐴)) = (𝐵 ∩ 𝐴) |
| 12 | 11 | eqeq1i 2736 | . 2 ⊢ ((𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴 ↔ (𝐵 ∩ 𝐴) = 𝐴) |
| 13 | 1, 12 | bitr4i 278 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ∩ cin 3896 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-in 3904 df-ss 3914 |
| This theorem is referenced by: ssdifim 4218 dfin4 4223 sscon34b 4249 sorpsscmpl 7662 sbthlem3 8997 fin23lem7 10202 fin23lem11 10203 compsscnvlem 10256 compssiso 10260 isf34lem4 10263 efgmnvl 19621 frlmlbs 21729 isopn2 22942 iincld 22949 iuncld 22955 clsval2 22960 ntrval2 22961 ntrdif 22962 clsdif 22963 cmclsopn 22972 opncldf1 22994 indiscld 23001 mretopd 23002 restcld 23082 pnrmopn 23253 conndisj 23326 hausllycmp 23404 kqcldsat 23643 filufint 23830 cfinufil 23838 ufilen 23840 alexsublem 23954 bcth3 25253 inmbl 25465 iccmbl 25489 mbfimaicc 25554 i1fd 25604 itgss3 25738 difuncomp 32525 iundifdifd 32533 iundifdif 32534 supppreima 32664 pmtrcnelor 33052 ist0cld 33838 cldssbrsiga 34192 unelcarsg 34317 kur14lem4 35245 cldbnd 36360 clsun 36362 mblfinlem3 37699 mblfinlem4 37700 ismblfin 37701 itg2addnclem 37711 fdc 37785 dssmapnvod 44053 ntrclsfveq1 44093 ntrclsfveq 44095 ntrclsneine0lem 44097 ntrclsiso 44100 ntrclsk2 44101 ntrclskb 44102 ntrclsk3 44103 ntrclsk13 44104 ntrclsk4 44105 clsneiel2 44142 neicvgel2 44153 salincl 46362 salexct 46372 ovnsubadd2lem 46683 lincext2 48487 opncldeqv 48933 |
| Copyright terms: Public domain | W3C validator |