| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfss4 | Structured version Visualization version GIF version | ||
| Description: Subclass defined in terms of class difference. See comments under dfun2 4233. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| dfss4 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqin2 4186 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) | |
| 2 | eldif 3924 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 3 | 2 | notbii 320 | . . . . . 6 ⊢ (¬ 𝑥 ∈ (𝐵 ∖ 𝐴) ↔ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
| 4 | 3 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 5 | elin 3930 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 6 | abai 826 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
| 7 | iman 401 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴) ↔ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 8 | 7 | anbi2i 623 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 9 | 5, 6, 8 | 3bitri 297 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 10 | 4, 9 | bitr4i 278 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ 𝑥 ∈ (𝐵 ∩ 𝐴)) |
| 11 | 10 | difeqri 4091 | . . 3 ⊢ (𝐵 ∖ (𝐵 ∖ 𝐴)) = (𝐵 ∩ 𝐴) |
| 12 | 11 | eqeq1i 2734 | . 2 ⊢ ((𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴 ↔ (𝐵 ∩ 𝐴) = 𝐴) |
| 13 | 1, 12 | bitr4i 278 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-in 3921 df-ss 3931 |
| This theorem is referenced by: ssdifim 4236 dfin4 4241 sscon34b 4267 sorpsscmpl 7710 sbthlem3 9053 fin23lem7 10269 fin23lem11 10270 compsscnvlem 10323 compssiso 10327 isf34lem4 10330 efgmnvl 19644 frlmlbs 21706 isopn2 22919 iincld 22926 iuncld 22932 clsval2 22937 ntrval2 22938 ntrdif 22939 clsdif 22940 cmclsopn 22949 opncldf1 22971 indiscld 22978 mretopd 22979 restcld 23059 pnrmopn 23230 conndisj 23303 hausllycmp 23381 kqcldsat 23620 filufint 23807 cfinufil 23815 ufilen 23817 alexsublem 23931 bcth3 25231 inmbl 25443 iccmbl 25467 mbfimaicc 25532 i1fd 25582 itgss3 25716 difuncomp 32482 iundifdifd 32490 iundifdif 32491 supppreima 32614 pmtrcnelor 33048 ist0cld 33823 cldssbrsiga 34177 unelcarsg 34303 kur14lem4 35196 cldbnd 36314 clsun 36316 mblfinlem3 37653 mblfinlem4 37654 ismblfin 37655 itg2addnclem 37665 fdc 37739 dssmapnvod 44009 ntrclsfveq1 44049 ntrclsfveq 44051 ntrclsneine0lem 44053 ntrclsiso 44056 ntrclsk2 44057 ntrclskb 44058 ntrclsk3 44059 ntrclsk13 44060 ntrclsk4 44061 clsneiel2 44098 neicvgel2 44109 salincl 46322 salexct 46332 ovnsubadd2lem 46643 lincext2 48444 opncldeqv 48890 |
| Copyright terms: Public domain | W3C validator |