| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfss4 | Structured version Visualization version GIF version | ||
| Description: Subclass defined in terms of class difference. See comments under dfun2 4245. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| dfss4 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqin2 4198 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) | |
| 2 | eldif 3936 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 3 | 2 | notbii 320 | . . . . . 6 ⊢ (¬ 𝑥 ∈ (𝐵 ∖ 𝐴) ↔ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
| 4 | 3 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 5 | elin 3942 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 6 | abai 826 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
| 7 | iman 401 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴) ↔ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 8 | 7 | anbi2i 623 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 9 | 5, 6, 8 | 3bitri 297 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 10 | 4, 9 | bitr4i 278 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ 𝑥 ∈ (𝐵 ∩ 𝐴)) |
| 11 | 10 | difeqri 4103 | . . 3 ⊢ (𝐵 ∖ (𝐵 ∖ 𝐴)) = (𝐵 ∩ 𝐴) |
| 12 | 11 | eqeq1i 2740 | . 2 ⊢ ((𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴 ↔ (𝐵 ∩ 𝐴) = 𝐴) |
| 13 | 1, 12 | bitr4i 278 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-in 3933 df-ss 3943 |
| This theorem is referenced by: ssdifim 4248 dfin4 4253 sscon34b 4279 sorpsscmpl 7728 sbthlem3 9099 fin23lem7 10330 fin23lem11 10331 compsscnvlem 10384 compssiso 10388 isf34lem4 10391 efgmnvl 19695 frlmlbs 21757 isopn2 22970 iincld 22977 iuncld 22983 clsval2 22988 ntrval2 22989 ntrdif 22990 clsdif 22991 cmclsopn 23000 opncldf1 23022 indiscld 23029 mretopd 23030 restcld 23110 pnrmopn 23281 conndisj 23354 hausllycmp 23432 kqcldsat 23671 filufint 23858 cfinufil 23866 ufilen 23868 alexsublem 23982 bcth3 25283 inmbl 25495 iccmbl 25519 mbfimaicc 25584 i1fd 25634 itgss3 25768 difuncomp 32534 iundifdifd 32542 iundifdif 32543 supppreima 32668 pmtrcnelor 33102 ist0cld 33864 cldssbrsiga 34218 unelcarsg 34344 kur14lem4 35231 cldbnd 36344 clsun 36346 mblfinlem3 37683 mblfinlem4 37684 ismblfin 37685 itg2addnclem 37695 fdc 37769 dssmapnvod 44044 ntrclsfveq1 44084 ntrclsfveq 44086 ntrclsneine0lem 44088 ntrclsiso 44091 ntrclsk2 44092 ntrclskb 44093 ntrclsk3 44094 ntrclsk13 44095 ntrclsk4 44096 clsneiel2 44133 neicvgel2 44144 salincl 46353 salexct 46363 ovnsubadd2lem 46674 lincext2 48431 opncldeqv 48876 |
| Copyright terms: Public domain | W3C validator |