MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss4 Structured version   Visualization version   GIF version

Theorem dfss4 4222
Description: Subclass defined in terms of class difference. See comments under dfun2 4223. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
dfss4 (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴)

Proof of Theorem dfss4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseqin2 4176 . 2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
2 eldif 3915 . . . . . . 7 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
32notbii 320 . . . . . 6 𝑥 ∈ (𝐵𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
43anbi2i 623 . . . . 5 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
5 elin 3921 . . . . . 6 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵𝑥𝐴))
6 abai 826 . . . . . 6 ((𝑥𝐵𝑥𝐴) ↔ (𝑥𝐵 ∧ (𝑥𝐵𝑥𝐴)))
7 iman 401 . . . . . . 7 ((𝑥𝐵𝑥𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
87anbi2i 623 . . . . . 6 ((𝑥𝐵 ∧ (𝑥𝐵𝑥𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
95, 6, 83bitri 297 . . . . 5 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
104, 9bitr4i 278 . . . 4 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ 𝑥 ∈ (𝐵𝐴))
1110difeqri 4081 . . 3 (𝐵 ∖ (𝐵𝐴)) = (𝐵𝐴)
1211eqeq1i 2734 . 2 ((𝐵 ∖ (𝐵𝐴)) = 𝐴 ↔ (𝐵𝐴) = 𝐴)
131, 12bitr4i 278 1 (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3902  cin 3904  wss 3905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-in 3912  df-ss 3922
This theorem is referenced by:  ssdifim  4226  dfin4  4231  sscon34b  4257  sorpsscmpl  7674  sbthlem3  9013  fin23lem7  10229  fin23lem11  10230  compsscnvlem  10283  compssiso  10287  isf34lem4  10290  efgmnvl  19611  frlmlbs  21722  isopn2  22935  iincld  22942  iuncld  22948  clsval2  22953  ntrval2  22954  ntrdif  22955  clsdif  22956  cmclsopn  22965  opncldf1  22987  indiscld  22994  mretopd  22995  restcld  23075  pnrmopn  23246  conndisj  23319  hausllycmp  23397  kqcldsat  23636  filufint  23823  cfinufil  23831  ufilen  23833  alexsublem  23947  bcth3  25247  inmbl  25459  iccmbl  25483  mbfimaicc  25548  i1fd  25598  itgss3  25732  difuncomp  32515  iundifdifd  32523  iundifdif  32524  supppreima  32647  pmtrcnelor  33046  ist0cld  33802  cldssbrsiga  34156  unelcarsg  34282  kur14lem4  35184  cldbnd  36302  clsun  36304  mblfinlem3  37641  mblfinlem4  37642  ismblfin  37643  itg2addnclem  37653  fdc  37727  dssmapnvod  43996  ntrclsfveq1  44036  ntrclsfveq  44038  ntrclsneine0lem  44040  ntrclsiso  44043  ntrclsk2  44044  ntrclskb  44045  ntrclsk3  44046  ntrclsk13  44047  ntrclsk4  44048  clsneiel2  44085  neicvgel2  44096  salincl  46309  salexct  46319  ovnsubadd2lem  46630  lincext2  48444  opncldeqv  48890
  Copyright terms: Public domain W3C validator