MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss4 Structured version   Visualization version   GIF version

Theorem dfss4 4244
Description: Subclass defined in terms of class difference. See comments under dfun2 4245. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
dfss4 (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴)

Proof of Theorem dfss4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseqin2 4198 . 2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
2 eldif 3936 . . . . . . 7 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
32notbii 320 . . . . . 6 𝑥 ∈ (𝐵𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
43anbi2i 623 . . . . 5 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
5 elin 3942 . . . . . 6 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵𝑥𝐴))
6 abai 826 . . . . . 6 ((𝑥𝐵𝑥𝐴) ↔ (𝑥𝐵 ∧ (𝑥𝐵𝑥𝐴)))
7 iman 401 . . . . . . 7 ((𝑥𝐵𝑥𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
87anbi2i 623 . . . . . 6 ((𝑥𝐵 ∧ (𝑥𝐵𝑥𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
95, 6, 83bitri 297 . . . . 5 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
104, 9bitr4i 278 . . . 4 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ 𝑥 ∈ (𝐵𝐴))
1110difeqri 4103 . . 3 (𝐵 ∖ (𝐵𝐴)) = (𝐵𝐴)
1211eqeq1i 2740 . 2 ((𝐵 ∖ (𝐵𝐴)) = 𝐴 ↔ (𝐵𝐴) = 𝐴)
131, 12bitr4i 278 1 (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cdif 3923  cin 3925  wss 3926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-in 3933  df-ss 3943
This theorem is referenced by:  ssdifim  4248  dfin4  4253  sscon34b  4279  sorpsscmpl  7728  sbthlem3  9099  fin23lem7  10330  fin23lem11  10331  compsscnvlem  10384  compssiso  10388  isf34lem4  10391  efgmnvl  19695  frlmlbs  21757  isopn2  22970  iincld  22977  iuncld  22983  clsval2  22988  ntrval2  22989  ntrdif  22990  clsdif  22991  cmclsopn  23000  opncldf1  23022  indiscld  23029  mretopd  23030  restcld  23110  pnrmopn  23281  conndisj  23354  hausllycmp  23432  kqcldsat  23671  filufint  23858  cfinufil  23866  ufilen  23868  alexsublem  23982  bcth3  25283  inmbl  25495  iccmbl  25519  mbfimaicc  25584  i1fd  25634  itgss3  25768  difuncomp  32534  iundifdifd  32542  iundifdif  32543  supppreima  32668  pmtrcnelor  33102  ist0cld  33864  cldssbrsiga  34218  unelcarsg  34344  kur14lem4  35231  cldbnd  36344  clsun  36346  mblfinlem3  37683  mblfinlem4  37684  ismblfin  37685  itg2addnclem  37695  fdc  37769  dssmapnvod  44044  ntrclsfveq1  44084  ntrclsfveq  44086  ntrclsneine0lem  44088  ntrclsiso  44091  ntrclsk2  44092  ntrclskb  44093  ntrclsk3  44094  ntrclsk13  44095  ntrclsk4  44096  clsneiel2  44133  neicvgel2  44144  salincl  46353  salexct  46363  ovnsubadd2lem  46674  lincext2  48431  opncldeqv  48876
  Copyright terms: Public domain W3C validator