MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss4 Structured version   Visualization version   GIF version

Theorem dfss4 4235
Description: Subclass defined in terms of class difference. See comments under dfun2 4236. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
dfss4 (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴)

Proof of Theorem dfss4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseqin2 4189 . 2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
2 eldif 3927 . . . . . . 7 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
32notbii 320 . . . . . 6 𝑥 ∈ (𝐵𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
43anbi2i 623 . . . . 5 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
5 elin 3933 . . . . . 6 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵𝑥𝐴))
6 abai 826 . . . . . 6 ((𝑥𝐵𝑥𝐴) ↔ (𝑥𝐵 ∧ (𝑥𝐵𝑥𝐴)))
7 iman 401 . . . . . . 7 ((𝑥𝐵𝑥𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
87anbi2i 623 . . . . . 6 ((𝑥𝐵 ∧ (𝑥𝐵𝑥𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
95, 6, 83bitri 297 . . . . 5 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
104, 9bitr4i 278 . . . 4 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ 𝑥 ∈ (𝐵𝐴))
1110difeqri 4094 . . 3 (𝐵 ∖ (𝐵𝐴)) = (𝐵𝐴)
1211eqeq1i 2735 . 2 ((𝐵 ∖ (𝐵𝐴)) = 𝐴 ↔ (𝐵𝐴) = 𝐴)
131, 12bitr4i 278 1 (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3914  cin 3916  wss 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-in 3924  df-ss 3934
This theorem is referenced by:  ssdifim  4239  dfin4  4244  sscon34b  4270  sorpsscmpl  7713  sbthlem3  9059  fin23lem7  10276  fin23lem11  10277  compsscnvlem  10330  compssiso  10334  isf34lem4  10337  efgmnvl  19651  frlmlbs  21713  isopn2  22926  iincld  22933  iuncld  22939  clsval2  22944  ntrval2  22945  ntrdif  22946  clsdif  22947  cmclsopn  22956  opncldf1  22978  indiscld  22985  mretopd  22986  restcld  23066  pnrmopn  23237  conndisj  23310  hausllycmp  23388  kqcldsat  23627  filufint  23814  cfinufil  23822  ufilen  23824  alexsublem  23938  bcth3  25238  inmbl  25450  iccmbl  25474  mbfimaicc  25539  i1fd  25589  itgss3  25723  difuncomp  32489  iundifdifd  32497  iundifdif  32498  supppreima  32621  pmtrcnelor  33055  ist0cld  33830  cldssbrsiga  34184  unelcarsg  34310  kur14lem4  35203  cldbnd  36321  clsun  36323  mblfinlem3  37660  mblfinlem4  37661  ismblfin  37662  itg2addnclem  37672  fdc  37746  dssmapnvod  44016  ntrclsfveq1  44056  ntrclsfveq  44058  ntrclsneine0lem  44060  ntrclsiso  44063  ntrclsk2  44064  ntrclskb  44065  ntrclsk3  44066  ntrclsk13  44067  ntrclsk4  44068  clsneiel2  44105  neicvgel2  44116  salincl  46329  salexct  46339  ovnsubadd2lem  46650  lincext2  48448  opncldeqv  48894
  Copyright terms: Public domain W3C validator