MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss4 Structured version   Visualization version   GIF version

Theorem dfss4 4232
Description: Subclass defined in terms of class difference. See comments under dfun2 4233. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
dfss4 (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴)

Proof of Theorem dfss4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseqin2 4186 . 2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
2 eldif 3924 . . . . . . 7 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
32notbii 320 . . . . . 6 𝑥 ∈ (𝐵𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
43anbi2i 623 . . . . 5 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
5 elin 3930 . . . . . 6 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵𝑥𝐴))
6 abai 826 . . . . . 6 ((𝑥𝐵𝑥𝐴) ↔ (𝑥𝐵 ∧ (𝑥𝐵𝑥𝐴)))
7 iman 401 . . . . . . 7 ((𝑥𝐵𝑥𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
87anbi2i 623 . . . . . 6 ((𝑥𝐵 ∧ (𝑥𝐵𝑥𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
95, 6, 83bitri 297 . . . . 5 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
104, 9bitr4i 278 . . . 4 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ 𝑥 ∈ (𝐵𝐴))
1110difeqri 4091 . . 3 (𝐵 ∖ (𝐵𝐴)) = (𝐵𝐴)
1211eqeq1i 2734 . 2 ((𝐵 ∖ (𝐵𝐴)) = 𝐴 ↔ (𝐵𝐴) = 𝐴)
131, 12bitr4i 278 1 (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3911  cin 3913  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-in 3921  df-ss 3931
This theorem is referenced by:  ssdifim  4236  dfin4  4241  sscon34b  4267  sorpsscmpl  7710  sbthlem3  9053  fin23lem7  10269  fin23lem11  10270  compsscnvlem  10323  compssiso  10327  isf34lem4  10330  efgmnvl  19644  frlmlbs  21706  isopn2  22919  iincld  22926  iuncld  22932  clsval2  22937  ntrval2  22938  ntrdif  22939  clsdif  22940  cmclsopn  22949  opncldf1  22971  indiscld  22978  mretopd  22979  restcld  23059  pnrmopn  23230  conndisj  23303  hausllycmp  23381  kqcldsat  23620  filufint  23807  cfinufil  23815  ufilen  23817  alexsublem  23931  bcth3  25231  inmbl  25443  iccmbl  25467  mbfimaicc  25532  i1fd  25582  itgss3  25716  difuncomp  32482  iundifdifd  32490  iundifdif  32491  supppreima  32614  pmtrcnelor  33048  ist0cld  33823  cldssbrsiga  34177  unelcarsg  34303  kur14lem4  35196  cldbnd  36314  clsun  36316  mblfinlem3  37653  mblfinlem4  37654  ismblfin  37655  itg2addnclem  37665  fdc  37739  dssmapnvod  44009  ntrclsfveq1  44049  ntrclsfveq  44051  ntrclsneine0lem  44053  ntrclsiso  44056  ntrclsk2  44057  ntrclskb  44058  ntrclsk3  44059  ntrclsk13  44060  ntrclsk4  44061  clsneiel2  44098  neicvgel2  44109  salincl  46322  salexct  46332  ovnsubadd2lem  46643  lincext2  48444  opncldeqv  48890
  Copyright terms: Public domain W3C validator