| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfss4 | Structured version Visualization version GIF version | ||
| Description: Subclass defined in terms of class difference. See comments under dfun2 4223. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| dfss4 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqin2 4176 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) | |
| 2 | eldif 3915 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 3 | 2 | notbii 320 | . . . . . 6 ⊢ (¬ 𝑥 ∈ (𝐵 ∖ 𝐴) ↔ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
| 4 | 3 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 5 | elin 3921 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 6 | abai 826 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
| 7 | iman 401 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴) ↔ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 8 | 7 | anbi2i 623 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 9 | 5, 6, 8 | 3bitri 297 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 10 | 4, 9 | bitr4i 278 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ 𝑥 ∈ (𝐵 ∩ 𝐴)) |
| 11 | 10 | difeqri 4081 | . . 3 ⊢ (𝐵 ∖ (𝐵 ∖ 𝐴)) = (𝐵 ∩ 𝐴) |
| 12 | 11 | eqeq1i 2734 | . 2 ⊢ ((𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴 ↔ (𝐵 ∩ 𝐴) = 𝐴) |
| 13 | 1, 12 | bitr4i 278 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ∩ cin 3904 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-in 3912 df-ss 3922 |
| This theorem is referenced by: ssdifim 4226 dfin4 4231 sscon34b 4257 sorpsscmpl 7674 sbthlem3 9013 fin23lem7 10229 fin23lem11 10230 compsscnvlem 10283 compssiso 10287 isf34lem4 10290 efgmnvl 19611 frlmlbs 21722 isopn2 22935 iincld 22942 iuncld 22948 clsval2 22953 ntrval2 22954 ntrdif 22955 clsdif 22956 cmclsopn 22965 opncldf1 22987 indiscld 22994 mretopd 22995 restcld 23075 pnrmopn 23246 conndisj 23319 hausllycmp 23397 kqcldsat 23636 filufint 23823 cfinufil 23831 ufilen 23833 alexsublem 23947 bcth3 25247 inmbl 25459 iccmbl 25483 mbfimaicc 25548 i1fd 25598 itgss3 25732 difuncomp 32515 iundifdifd 32523 iundifdif 32524 supppreima 32647 pmtrcnelor 33046 ist0cld 33802 cldssbrsiga 34156 unelcarsg 34282 kur14lem4 35184 cldbnd 36302 clsun 36304 mblfinlem3 37641 mblfinlem4 37642 ismblfin 37643 itg2addnclem 37653 fdc 37727 dssmapnvod 43996 ntrclsfveq1 44036 ntrclsfveq 44038 ntrclsneine0lem 44040 ntrclsiso 44043 ntrclsk2 44044 ntrclskb 44045 ntrclsk3 44046 ntrclsk13 44047 ntrclsk4 44048 clsneiel2 44085 neicvgel2 44096 salincl 46309 salexct 46319 ovnsubadd2lem 46630 lincext2 48444 opncldeqv 48890 |
| Copyright terms: Public domain | W3C validator |