MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss4 Structured version   Visualization version   GIF version

Theorem dfss4 4288
Description: Subclass defined in terms of class difference. See comments under dfun2 4289. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
dfss4 (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴)

Proof of Theorem dfss4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseqin2 4244 . 2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
2 eldif 3986 . . . . . . 7 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
32notbii 320 . . . . . 6 𝑥 ∈ (𝐵𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
43anbi2i 622 . . . . 5 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
5 elin 3992 . . . . . 6 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵𝑥𝐴))
6 abai 826 . . . . . 6 ((𝑥𝐵𝑥𝐴) ↔ (𝑥𝐵 ∧ (𝑥𝐵𝑥𝐴)))
7 iman 401 . . . . . . 7 ((𝑥𝐵𝑥𝐴) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
87anbi2i 622 . . . . . 6 ((𝑥𝐵 ∧ (𝑥𝐵𝑥𝐴)) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
95, 6, 83bitri 297 . . . . 5 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
104, 9bitr4i 278 . . . 4 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵𝐴)) ↔ 𝑥 ∈ (𝐵𝐴))
1110difeqri 4151 . . 3 (𝐵 ∖ (𝐵𝐴)) = (𝐵𝐴)
1211eqeq1i 2745 . 2 ((𝐵 ∖ (𝐵𝐴)) = 𝐴 ↔ (𝐵𝐴) = 𝐴)
131, 12bitr4i 278 1 (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cdif 3973  cin 3975  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-in 3983  df-ss 3993
This theorem is referenced by:  ssdifim  4292  dfin4  4297  sscon34b  4323  sorpsscmpl  7769  sbthlem3  9151  fin23lem7  10385  fin23lem11  10386  compsscnvlem  10439  compssiso  10443  isf34lem4  10446  efgmnvl  19756  frlmlbs  21840  isopn2  23061  iincld  23068  iuncld  23074  clsval2  23079  ntrval2  23080  ntrdif  23081  clsdif  23082  cmclsopn  23091  opncldf1  23113  indiscld  23120  mretopd  23121  restcld  23201  pnrmopn  23372  conndisj  23445  hausllycmp  23523  kqcldsat  23762  filufint  23949  cfinufil  23957  ufilen  23959  alexsublem  24073  bcth3  25384  inmbl  25596  iccmbl  25620  mbfimaicc  25685  i1fd  25735  itgss3  25870  difuncomp  32576  iundifdifd  32584  iundifdif  32585  supppreima  32703  pmtrcnelor  33084  ist0cld  33779  cldssbrsiga  34151  unelcarsg  34277  kur14lem4  35177  cldbnd  36292  clsun  36294  mblfinlem3  37619  mblfinlem4  37620  ismblfin  37621  itg2addnclem  37631  fdc  37705  dssmapnvod  43982  ntrclsfveq1  44022  ntrclsfveq  44024  ntrclsneine0lem  44026  ntrclsiso  44029  ntrclsk2  44030  ntrclskb  44031  ntrclsk3  44032  ntrclsk13  44033  ntrclsk4  44034  clsneiel2  44071  neicvgel2  44082  salincl  46245  salexct  46255  ovnsubadd2lem  46566  lincext2  48184  opncldeqv  48581
  Copyright terms: Public domain W3C validator