![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > choc0 | Structured version Visualization version GIF version |
Description: The orthocomplement of the zero subspace is the unit subspace. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
choc0 | ⊢ (⊥‘0ℋ) = ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h0elsh 30978 | . . . 4 ⊢ 0ℋ ∈ Sℋ | |
2 | shocel 31004 | . . . 4 ⊢ (0ℋ ∈ Sℋ → (𝑥 ∈ (⊥‘0ℋ) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ (⊥‘0ℋ) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0)) |
4 | hi02 30819 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑥 ·ih 0ℎ) = 0) | |
5 | df-ral 3054 | . . . . . 6 ⊢ (∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0 ↔ ∀𝑦(𝑦 ∈ 0ℋ → (𝑥 ·ih 𝑦) = 0)) | |
6 | elch0 30976 | . . . . . . . . 9 ⊢ (𝑦 ∈ 0ℋ ↔ 𝑦 = 0ℎ) | |
7 | 6 | imbi1i 349 | . . . . . . . 8 ⊢ ((𝑦 ∈ 0ℋ → (𝑥 ·ih 𝑦) = 0) ↔ (𝑦 = 0ℎ → (𝑥 ·ih 𝑦) = 0)) |
8 | 7 | albii 1813 | . . . . . . 7 ⊢ (∀𝑦(𝑦 ∈ 0ℋ → (𝑥 ·ih 𝑦) = 0) ↔ ∀𝑦(𝑦 = 0ℎ → (𝑥 ·ih 𝑦) = 0)) |
9 | ax-hv0cl 30725 | . . . . . . . . 9 ⊢ 0ℎ ∈ ℋ | |
10 | 9 | elexi 3486 | . . . . . . . 8 ⊢ 0ℎ ∈ V |
11 | oveq2 7409 | . . . . . . . . 9 ⊢ (𝑦 = 0ℎ → (𝑥 ·ih 𝑦) = (𝑥 ·ih 0ℎ)) | |
12 | 11 | eqeq1d 2726 | . . . . . . . 8 ⊢ (𝑦 = 0ℎ → ((𝑥 ·ih 𝑦) = 0 ↔ (𝑥 ·ih 0ℎ) = 0)) |
13 | 10, 12 | ceqsalv 3504 | . . . . . . 7 ⊢ (∀𝑦(𝑦 = 0ℎ → (𝑥 ·ih 𝑦) = 0) ↔ (𝑥 ·ih 0ℎ) = 0) |
14 | 8, 13 | bitri 275 | . . . . . 6 ⊢ (∀𝑦(𝑦 ∈ 0ℋ → (𝑥 ·ih 𝑦) = 0) ↔ (𝑥 ·ih 0ℎ) = 0) |
15 | 5, 14 | bitri 275 | . . . . 5 ⊢ (∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0 ↔ (𝑥 ·ih 0ℎ) = 0) |
16 | 4, 15 | sylibr 233 | . . . 4 ⊢ (𝑥 ∈ ℋ → ∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0) |
17 | abai 824 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0) ↔ (𝑥 ∈ ℋ ∧ (𝑥 ∈ ℋ → ∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0))) | |
18 | 16, 17 | mpbiran2 707 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0) ↔ 𝑥 ∈ ℋ) |
19 | 3, 18 | bitri 275 | . 2 ⊢ (𝑥 ∈ (⊥‘0ℋ) ↔ 𝑥 ∈ ℋ) |
20 | 19 | eqriv 2721 | 1 ⊢ (⊥‘0ℋ) = ℋ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ‘cfv 6533 (class class class)co 7401 0cc0 11106 ℋchba 30641 ·ih csp 30644 0ℎc0v 30646 Sℋ csh 30650 ⊥cort 30652 0ℋc0h 30657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 ax-hilex 30721 ax-hfvadd 30722 ax-hvcom 30723 ax-hvass 30724 ax-hv0cl 30725 ax-hvaddid 30726 ax-hfvmul 30727 ax-hvmulid 30728 ax-hvmulass 30729 ax-hvdistr1 30730 ax-hvdistr2 30731 ax-hvmul0 30732 ax-hfi 30801 ax-his1 30804 ax-his2 30805 ax-his3 30806 ax-his4 30807 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-n0 12470 df-z 12556 df-uz 12820 df-q 12930 df-rp 12972 df-xneg 13089 df-xadd 13090 df-xmul 13091 df-icc 13328 df-seq 13964 df-exp 14025 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-topgen 17388 df-psmet 21220 df-xmet 21221 df-met 21222 df-bl 21223 df-mopn 21224 df-top 22718 df-topon 22735 df-bases 22771 df-lm 23055 df-haus 23141 df-grpo 30215 df-gid 30216 df-ginv 30217 df-gdiv 30218 df-ablo 30267 df-vc 30281 df-nv 30314 df-va 30317 df-ba 30318 df-sm 30319 df-0v 30320 df-vs 30321 df-nmcv 30322 df-ims 30323 df-hnorm 30690 df-hvsub 30693 df-hlim 30694 df-sh 30929 df-ch 30943 df-oc 30974 df-ch0 30975 |
This theorem is referenced by: choc1 31049 ssjo 31169 qlaxr3i 31358 riesz3i 31784 chirredi 32116 mdsymi 32133 |
Copyright terms: Public domain | W3C validator |