HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  choc0 Structured version   Visualization version   GIF version

Theorem choc0 31355
Description: The orthocomplement of the zero subspace is the unit subspace. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
choc0 (⊥‘0) = ℋ

Proof of Theorem choc0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 h0elsh 31285 . . . 4 0S
2 shocel 31311 . . . 4 (0S → (𝑥 ∈ (⊥‘0) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0 (𝑥 ·ih 𝑦) = 0)))
31, 2ax-mp 5 . . 3 (𝑥 ∈ (⊥‘0) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0 (𝑥 ·ih 𝑦) = 0))
4 hi02 31126 . . . . 5 (𝑥 ∈ ℋ → (𝑥 ·ih 0) = 0)
5 df-ral 3060 . . . . . 6 (∀𝑦 ∈ 0 (𝑥 ·ih 𝑦) = 0 ↔ ∀𝑦(𝑦 ∈ 0 → (𝑥 ·ih 𝑦) = 0))
6 elch0 31283 . . . . . . . . 9 (𝑦 ∈ 0𝑦 = 0)
76imbi1i 349 . . . . . . . 8 ((𝑦 ∈ 0 → (𝑥 ·ih 𝑦) = 0) ↔ (𝑦 = 0 → (𝑥 ·ih 𝑦) = 0))
87albii 1816 . . . . . . 7 (∀𝑦(𝑦 ∈ 0 → (𝑥 ·ih 𝑦) = 0) ↔ ∀𝑦(𝑦 = 0 → (𝑥 ·ih 𝑦) = 0))
9 ax-hv0cl 31032 . . . . . . . . 9 0 ∈ ℋ
109elexi 3501 . . . . . . . 8 0 ∈ V
11 oveq2 7439 . . . . . . . . 9 (𝑦 = 0 → (𝑥 ·ih 𝑦) = (𝑥 ·ih 0))
1211eqeq1d 2737 . . . . . . . 8 (𝑦 = 0 → ((𝑥 ·ih 𝑦) = 0 ↔ (𝑥 ·ih 0) = 0))
1310, 12ceqsalv 3519 . . . . . . 7 (∀𝑦(𝑦 = 0 → (𝑥 ·ih 𝑦) = 0) ↔ (𝑥 ·ih 0) = 0)
148, 13bitri 275 . . . . . 6 (∀𝑦(𝑦 ∈ 0 → (𝑥 ·ih 𝑦) = 0) ↔ (𝑥 ·ih 0) = 0)
155, 14bitri 275 . . . . 5 (∀𝑦 ∈ 0 (𝑥 ·ih 𝑦) = 0 ↔ (𝑥 ·ih 0) = 0)
164, 15sylibr 234 . . . 4 (𝑥 ∈ ℋ → ∀𝑦 ∈ 0 (𝑥 ·ih 𝑦) = 0)
17 abai 827 . . . 4 ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0 (𝑥 ·ih 𝑦) = 0) ↔ (𝑥 ∈ ℋ ∧ (𝑥 ∈ ℋ → ∀𝑦 ∈ 0 (𝑥 ·ih 𝑦) = 0)))
1816, 17mpbiran2 710 . . 3 ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0 (𝑥 ·ih 𝑦) = 0) ↔ 𝑥 ∈ ℋ)
193, 18bitri 275 . 2 (𝑥 ∈ (⊥‘0) ↔ 𝑥 ∈ ℋ)
2019eqriv 2732 1 (⊥‘0) = ℋ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2106  wral 3059  cfv 6563  (class class class)co 7431  0cc0 11153  chba 30948   ·ih csp 30951  0c0v 30953   S csh 30957  cort 30959  0c0h 30964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233  ax-hilex 31028  ax-hfvadd 31029  ax-hvcom 31030  ax-hvass 31031  ax-hv0cl 31032  ax-hvaddid 31033  ax-hfvmul 31034  ax-hvmulid 31035  ax-hvmulass 31036  ax-hvdistr1 31037  ax-hvdistr2 31038  ax-hvmul0 31039  ax-hfi 31108  ax-his1 31111  ax-his2 31112  ax-his3 31113  ax-his4 31114
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-icc 13391  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969  df-lm 23253  df-haus 23339  df-grpo 30522  df-gid 30523  df-ginv 30524  df-gdiv 30525  df-ablo 30574  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-vs 30628  df-nmcv 30629  df-ims 30630  df-hnorm 30997  df-hvsub 31000  df-hlim 31001  df-sh 31236  df-ch 31250  df-oc 31281  df-ch0 31282
This theorem is referenced by:  choc1  31356  ssjo  31476  qlaxr3i  31665  riesz3i  32091  chirredi  32423  mdsymi  32440
  Copyright terms: Public domain W3C validator