| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > choc0 | Structured version Visualization version GIF version | ||
| Description: The orthocomplement of the zero subspace is the unit subspace. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| choc0 | ⊢ (⊥‘0ℋ) = ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h0elsh 31231 | . . . 4 ⊢ 0ℋ ∈ Sℋ | |
| 2 | shocel 31257 | . . . 4 ⊢ (0ℋ ∈ Sℋ → (𝑥 ∈ (⊥‘0ℋ) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0))) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ (⊥‘0ℋ) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0)) |
| 4 | hi02 31072 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑥 ·ih 0ℎ) = 0) | |
| 5 | df-ral 3048 | . . . . . 6 ⊢ (∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0 ↔ ∀𝑦(𝑦 ∈ 0ℋ → (𝑥 ·ih 𝑦) = 0)) | |
| 6 | elch0 31229 | . . . . . . . . 9 ⊢ (𝑦 ∈ 0ℋ ↔ 𝑦 = 0ℎ) | |
| 7 | 6 | imbi1i 349 | . . . . . . . 8 ⊢ ((𝑦 ∈ 0ℋ → (𝑥 ·ih 𝑦) = 0) ↔ (𝑦 = 0ℎ → (𝑥 ·ih 𝑦) = 0)) |
| 8 | 7 | albii 1820 | . . . . . . 7 ⊢ (∀𝑦(𝑦 ∈ 0ℋ → (𝑥 ·ih 𝑦) = 0) ↔ ∀𝑦(𝑦 = 0ℎ → (𝑥 ·ih 𝑦) = 0)) |
| 9 | ax-hv0cl 30978 | . . . . . . . . 9 ⊢ 0ℎ ∈ ℋ | |
| 10 | 9 | elexi 3459 | . . . . . . . 8 ⊢ 0ℎ ∈ V |
| 11 | oveq2 7354 | . . . . . . . . 9 ⊢ (𝑦 = 0ℎ → (𝑥 ·ih 𝑦) = (𝑥 ·ih 0ℎ)) | |
| 12 | 11 | eqeq1d 2733 | . . . . . . . 8 ⊢ (𝑦 = 0ℎ → ((𝑥 ·ih 𝑦) = 0 ↔ (𝑥 ·ih 0ℎ) = 0)) |
| 13 | 10, 12 | ceqsalv 3476 | . . . . . . 7 ⊢ (∀𝑦(𝑦 = 0ℎ → (𝑥 ·ih 𝑦) = 0) ↔ (𝑥 ·ih 0ℎ) = 0) |
| 14 | 8, 13 | bitri 275 | . . . . . 6 ⊢ (∀𝑦(𝑦 ∈ 0ℋ → (𝑥 ·ih 𝑦) = 0) ↔ (𝑥 ·ih 0ℎ) = 0) |
| 15 | 5, 14 | bitri 275 | . . . . 5 ⊢ (∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0 ↔ (𝑥 ·ih 0ℎ) = 0) |
| 16 | 4, 15 | sylibr 234 | . . . 4 ⊢ (𝑥 ∈ ℋ → ∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0) |
| 17 | abai 826 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0) ↔ (𝑥 ∈ ℋ ∧ (𝑥 ∈ ℋ → ∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0))) | |
| 18 | 16, 17 | mpbiran2 710 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ 0ℋ (𝑥 ·ih 𝑦) = 0) ↔ 𝑥 ∈ ℋ) |
| 19 | 3, 18 | bitri 275 | . 2 ⊢ (𝑥 ∈ (⊥‘0ℋ) ↔ 𝑥 ∈ ℋ) |
| 20 | 19 | eqriv 2728 | 1 ⊢ (⊥‘0ℋ) = ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6481 (class class class)co 7346 0cc0 11003 ℋchba 30894 ·ih csp 30897 0ℎc0v 30899 Sℋ csh 30903 ⊥cort 30905 0ℋc0h 30910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 ax-mulf 11083 ax-hilex 30974 ax-hfvadd 30975 ax-hvcom 30976 ax-hvass 30977 ax-hv0cl 30978 ax-hvaddid 30979 ax-hfvmul 30980 ax-hvmulid 30981 ax-hvmulass 30982 ax-hvdistr1 30983 ax-hvdistr2 30984 ax-hvmul0 30985 ax-hfi 31054 ax-his1 31057 ax-his2 31058 ax-his3 31059 ax-his4 31060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-icc 13249 df-seq 13906 df-exp 13966 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-topgen 17344 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-top 22807 df-topon 22824 df-bases 22859 df-lm 23142 df-haus 23228 df-grpo 30468 df-gid 30469 df-ginv 30470 df-gdiv 30471 df-ablo 30520 df-vc 30534 df-nv 30567 df-va 30570 df-ba 30571 df-sm 30572 df-0v 30573 df-vs 30574 df-nmcv 30575 df-ims 30576 df-hnorm 30943 df-hvsub 30946 df-hlim 30947 df-sh 31182 df-ch 31196 df-oc 31227 df-ch0 31228 |
| This theorem is referenced by: choc1 31302 ssjo 31422 qlaxr3i 31611 riesz3i 32037 chirredi 32369 mdsymi 32386 |
| Copyright terms: Public domain | W3C validator |