MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfeumo Structured version   Visualization version   GIF version

Theorem dfeumo 2537
Description: An elementary proof showing the reverse direction of dfmoeu 2536. Here the characterizing expression of existential uniqueness (eu6 2574) is derived from that of uniqueness (df-mo 2540). (Contributed by Wolf Lammen, 3-Oct-2023.)
Assertion
Ref Expression
dfeumo ((∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfeumo
StepHypRef Expression
1 ax6ev 1969 . . . . 5 𝑥 𝑥 = 𝑦
2 biimpr 220 . . . . . 6 ((𝜑𝑥 = 𝑦) → (𝑥 = 𝑦𝜑))
32aleximi 1832 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥𝜑))
41, 3mpi 20 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → ∃𝑥𝜑)
54exlimiv 1930 . . 3 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑥𝜑)
65pm4.71ri 560 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
7 abai 827 . 2 ((∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ (∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))))
8 dfmoeu 2536 . . 3 ((∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
98anbi2i 623 . 2 ((∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
106, 7, 93bitrri 298 1 ((∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ex 1780  df-nf 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator