|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dfeumo | Structured version Visualization version GIF version | ||
| Description: An elementary proof showing the reverse direction of dfmoeu 2536. Here the characterizing expression of existential uniqueness (eu6 2574) is derived from that of uniqueness (df-mo 2540). (Contributed by Wolf Lammen, 3-Oct-2023.) | 
| Ref | Expression | 
|---|---|
| dfeumo | ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax6ev 1969 | . . . . 5 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 2 | biimpr 220 | . . . . . 6 ⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → 𝜑)) | |
| 3 | 2 | aleximi 1832 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥𝜑)) | 
| 4 | 1, 3 | mpi 20 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑) | 
| 5 | 4 | exlimiv 1930 | . . 3 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑) | 
| 6 | 5 | pm4.71ri 560 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) | 
| 7 | abai 827 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)))) | |
| 8 | dfmoeu 2536 | . . 3 ⊢ ((∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
| 9 | 8 | anbi2i 623 | . 2 ⊢ ((∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | 
| 10 | 6, 7, 9 | 3bitrri 298 | 1 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |