|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dfeu | Structured version Visualization version GIF version | ||
| Description: Rederive df-eu 2569 from the old definition eu6 2574. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 25-May-2019.) (Proof shortened by BJ, 7-Oct-2022.) (Proof modification is discouraged.) Use df-eu 2569 instead. (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| dfeu | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abai 827 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃!𝑥𝜑) ↔ (∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃!𝑥𝜑))) | |
| 2 | euex 2577 | . . 3 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) | |
| 3 | 2 | pm4.71ri 560 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃!𝑥𝜑)) | 
| 4 | moeu 2583 | . . 3 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
| 5 | 4 | anbi2i 623 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃!𝑥𝜑))) | 
| 6 | 1, 3, 5 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∃*wmo 2538 ∃!weu 2568 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 df-eu 2569 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |