MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfeu Structured version   Visualization version   GIF version

Theorem dfeu 2595
Description: Rederive df-eu 2569 from the old definition eu6 2574. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 25-May-2019.) (Proof shortened by BJ, 7-Oct-2022.) (Proof modification is discouraged.) Use df-eu 2569 instead. (New usage is discouraged.)
Assertion
Ref Expression
dfeu (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))

Proof of Theorem dfeu
StepHypRef Expression
1 abai 824 . 2 ((∃𝑥𝜑 ∧ ∃!𝑥𝜑) ↔ (∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃!𝑥𝜑)))
2 euex 2577 . . 3 (∃!𝑥𝜑 → ∃𝑥𝜑)
32pm4.71ri 561 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃!𝑥𝜑))
4 moeu 2583 . . 3 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
54anbi2i 623 . 2 ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃!𝑥𝜑)))
61, 3, 53bitr4i 303 1 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wex 1782  ∃*wmo 2538  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-mo 2540  df-eu 2569
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator