Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfeu | Structured version Visualization version GIF version |
Description: Rederive df-eu 2569 from the old definition eu6 2574. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 25-May-2019.) (Proof shortened by BJ, 7-Oct-2022.) (Proof modification is discouraged.) Use df-eu 2569 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
dfeu | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abai 823 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃!𝑥𝜑) ↔ (∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃!𝑥𝜑))) | |
2 | euex 2577 | . . 3 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) | |
3 | 2 | pm4.71ri 560 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃!𝑥𝜑)) |
4 | moeu 2583 | . . 3 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
5 | 4 | anbi2i 622 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃!𝑥𝜑))) |
6 | 1, 3, 5 | 3bitr4i 302 | 1 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1783 ∃*wmo 2538 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-mo 2540 df-eu 2569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |