![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1setex | Structured version Visualization version GIF version |
Description: The set of injections between two classes exists if the codomain exists. (Contributed by AV, 14-Aug-2024.) |
Ref | Expression |
---|---|
f1setex | ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsetex 8881 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) | |
2 | df-f1 6558 | . . . . 5 ⊢ (𝑓:𝐴–1-1→𝐵 ↔ (𝑓:𝐴⟶𝐵 ∧ Fun ◡𝑓)) | |
3 | 2 | abbii 2798 | . . . 4 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ Fun ◡𝑓)} |
4 | abanssl 4304 | . . . 4 ⊢ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ Fun ◡𝑓)} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} | |
5 | 3, 4 | eqsstri 4016 | . . 3 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
6 | 5 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵}) |
7 | 1, 6 | ssexd 5328 | 1 ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 {cab 2705 Vcvv 3473 ⊆ wss 3949 ◡ccnv 5681 Fun wfun 6547 ⟶wf 6549 –1-1→wf1 6550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 7999 df-2nd 8000 df-map 8853 |
This theorem is referenced by: hashf1lem1 14455 |
Copyright terms: Public domain | W3C validator |