MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1setex Structured version   Visualization version   GIF version

Theorem f1setex 8716
Description: The set of injections between two classes exists if the codomain exists. (Contributed by AV, 14-Aug-2024.)
Assertion
Ref Expression
f1setex (𝐵𝑉 → {𝑓𝑓:𝐴1-1𝐵} ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem f1setex
StepHypRef Expression
1 fsetex 8715 . 2 (𝐵𝑉 → {𝑓𝑓:𝐴𝐵} ∈ V)
2 df-f1 6484 . . . . 5 (𝑓:𝐴1-1𝐵 ↔ (𝑓:𝐴𝐵 ∧ Fun 𝑓))
32abbii 2806 . . . 4 {𝑓𝑓:𝐴1-1𝐵} = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ Fun 𝑓)}
4 abanssl 4248 . . . 4 {𝑓 ∣ (𝑓:𝐴𝐵 ∧ Fun 𝑓)} ⊆ {𝑓𝑓:𝐴𝐵}
53, 4eqsstri 3966 . . 3 {𝑓𝑓:𝐴1-1𝐵} ⊆ {𝑓𝑓:𝐴𝐵}
65a1i 11 . 2 (𝐵𝑉 → {𝑓𝑓:𝐴1-1𝐵} ⊆ {𝑓𝑓:𝐴𝐵})
71, 6ssexd 5268 1 (𝐵𝑉 → {𝑓𝑓:𝐴1-1𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2105  {cab 2713  Vcvv 3441  wss 3898  ccnv 5619  Fun wfun 6473  wf 6475  1-1wf1 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fv 6487  df-ov 7340  df-oprab 7341  df-mpo 7342  df-1st 7899  df-2nd 7900  df-map 8688
This theorem is referenced by:  hashf1lem1  14268
  Copyright terms: Public domain W3C validator