MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1setex Structured version   Visualization version   GIF version

Theorem f1setex 8876
Description: The set of injections between two classes exists if the codomain exists. (Contributed by AV, 14-Aug-2024.)
Assertion
Ref Expression
f1setex (𝐵𝑉 → {𝑓𝑓:𝐴1-1𝐵} ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem f1setex
StepHypRef Expression
1 fsetex 8875 . 2 (𝐵𝑉 → {𝑓𝑓:𝐴𝐵} ∈ V)
2 df-f1 6541 . . . . 5 (𝑓:𝐴1-1𝐵 ↔ (𝑓:𝐴𝐵 ∧ Fun 𝑓))
32abbii 2803 . . . 4 {𝑓𝑓:𝐴1-1𝐵} = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ Fun 𝑓)}
4 abanssl 4291 . . . 4 {𝑓 ∣ (𝑓:𝐴𝐵 ∧ Fun 𝑓)} ⊆ {𝑓𝑓:𝐴𝐵}
53, 4eqsstri 4010 . . 3 {𝑓𝑓:𝐴1-1𝐵} ⊆ {𝑓𝑓:𝐴𝐵}
65a1i 11 . 2 (𝐵𝑉 → {𝑓𝑓:𝐴1-1𝐵} ⊆ {𝑓𝑓:𝐴𝐵})
71, 6ssexd 5299 1 (𝐵𝑉 → {𝑓𝑓:𝐴1-1𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {cab 2714  Vcvv 3464  wss 3931  ccnv 5658  Fun wfun 6530  wf 6532  1-1wf1 6533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847
This theorem is referenced by:  hashf1lem1  14478
  Copyright terms: Public domain W3C validator