Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1setex | Structured version Visualization version GIF version |
Description: The set of injections between two classes exists if the codomain exists. (Contributed by AV, 14-Aug-2024.) |
Ref | Expression |
---|---|
f1setex | ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsetex 8715 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) | |
2 | df-f1 6484 | . . . . 5 ⊢ (𝑓:𝐴–1-1→𝐵 ↔ (𝑓:𝐴⟶𝐵 ∧ Fun ◡𝑓)) | |
3 | 2 | abbii 2806 | . . . 4 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ Fun ◡𝑓)} |
4 | abanssl 4248 | . . . 4 ⊢ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ Fun ◡𝑓)} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} | |
5 | 3, 4 | eqsstri 3966 | . . 3 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
6 | 5 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵}) |
7 | 1, 6 | ssexd 5268 | 1 ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 {cab 2713 Vcvv 3441 ⊆ wss 3898 ◡ccnv 5619 Fun wfun 6473 ⟶wf 6475 –1-1→wf1 6476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-1st 7899 df-2nd 7900 df-map 8688 |
This theorem is referenced by: hashf1lem1 14268 |
Copyright terms: Public domain | W3C validator |