| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1setex | Structured version Visualization version GIF version | ||
| Description: The set of injections between two classes exists if the codomain exists. (Contributed by AV, 14-Aug-2024.) |
| Ref | Expression |
|---|---|
| f1setex | ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsetex 8788 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) | |
| 2 | df-f1 6493 | . . . . 5 ⊢ (𝑓:𝐴–1-1→𝐵 ↔ (𝑓:𝐴⟶𝐵 ∧ Fun ◡𝑓)) | |
| 3 | 2 | abbii 2800 | . . . 4 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ Fun ◡𝑓)} |
| 4 | abanssl 4260 | . . . 4 ⊢ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ Fun ◡𝑓)} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} | |
| 5 | 3, 4 | eqsstri 3977 | . . 3 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵}) |
| 7 | 1, 6 | ssexd 5266 | 1 ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 {cab 2711 Vcvv 3437 ⊆ wss 3898 ◡ccnv 5620 Fun wfun 6482 ⟶wf 6484 –1-1→wf1 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-map 8760 |
| This theorem is referenced by: hashf1lem1 14366 |
| Copyright terms: Public domain | W3C validator |