MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1setex Structured version   Visualization version   GIF version

Theorem f1setex 8915
Description: The set of injections between two classes exists if the codomain exists. (Contributed by AV, 14-Aug-2024.)
Assertion
Ref Expression
f1setex (𝐵𝑉 → {𝑓𝑓:𝐴1-1𝐵} ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem f1setex
StepHypRef Expression
1 fsetex 8914 . 2 (𝐵𝑉 → {𝑓𝑓:𝐴𝐵} ∈ V)
2 df-f1 6578 . . . . 5 (𝑓:𝐴1-1𝐵 ↔ (𝑓:𝐴𝐵 ∧ Fun 𝑓))
32abbii 2812 . . . 4 {𝑓𝑓:𝐴1-1𝐵} = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ Fun 𝑓)}
4 abanssl 4330 . . . 4 {𝑓 ∣ (𝑓:𝐴𝐵 ∧ Fun 𝑓)} ⊆ {𝑓𝑓:𝐴𝐵}
53, 4eqsstri 4043 . . 3 {𝑓𝑓:𝐴1-1𝐵} ⊆ {𝑓𝑓:𝐴𝐵}
65a1i 11 . 2 (𝐵𝑉 → {𝑓𝑓:𝐴1-1𝐵} ⊆ {𝑓𝑓:𝐴𝐵})
71, 6ssexd 5342 1 (𝐵𝑉 → {𝑓𝑓:𝐴1-1𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  {cab 2717  Vcvv 3488  wss 3976  ccnv 5699  Fun wfun 6567  wf 6569  1-1wf1 6570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886
This theorem is referenced by:  hashf1lem1  14504
  Copyright terms: Public domain W3C validator