![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1setex | Structured version Visualization version GIF version |
Description: The set of injections between two classes exists if the codomain exists. (Contributed by AV, 14-Aug-2024.) |
Ref | Expression |
---|---|
f1setex | ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsetex 8849 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) | |
2 | df-f1 6548 | . . . . 5 ⊢ (𝑓:𝐴–1-1→𝐵 ↔ (𝑓:𝐴⟶𝐵 ∧ Fun ◡𝑓)) | |
3 | 2 | abbii 2802 | . . . 4 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ Fun ◡𝑓)} |
4 | abanssl 4301 | . . . 4 ⊢ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ Fun ◡𝑓)} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} | |
5 | 3, 4 | eqsstri 4016 | . . 3 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
6 | 5 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵}) |
7 | 1, 6 | ssexd 5324 | 1 ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 {cab 2709 Vcvv 3474 ⊆ wss 3948 ◡ccnv 5675 Fun wfun 6537 ⟶wf 6539 –1-1→wf1 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-map 8821 |
This theorem is referenced by: hashf1lem1 14414 |
Copyright terms: Public domain | W3C validator |