Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difab | Structured version Visualization version GIF version |
Description: Difference of two class abstractions. (Contributed by NM, 23-Oct-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difab | ⊢ ({𝑥 ∣ 𝜑} ∖ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2716 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)} ↔ [𝑦 / 𝑥](𝜑 ∧ ¬ 𝜓)) | |
2 | sban 2083 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥] ¬ 𝜓)) | |
3 | df-clab 2716 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
4 | 3 | bicomi 223 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
5 | sbn 2277 | . . . . 5 ⊢ ([𝑦 / 𝑥] ¬ 𝜓 ↔ ¬ [𝑦 / 𝑥]𝜓) | |
6 | df-clab 2716 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
7 | 5, 6 | xchbinxr 335 | . . . 4 ⊢ ([𝑦 / 𝑥] ¬ 𝜓 ↔ ¬ 𝑦 ∈ {𝑥 ∣ 𝜓}) |
8 | 4, 7 | anbi12i 627 | . . 3 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥] ¬ 𝜓) ↔ (𝑦 ∈ {𝑥 ∣ 𝜑} ∧ ¬ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
9 | 1, 2, 8 | 3bitrri 298 | . 2 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∧ ¬ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ 𝑦 ∈ {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)}) |
10 | 9 | difeqri 4059 | 1 ⊢ ({𝑥 ∣ 𝜑} ∖ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1539 [wsb 2067 ∈ wcel 2106 {cab 2715 ∖ cdif 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 |
This theorem is referenced by: notab 4238 difrab 4242 notrab 4245 |
Copyright terms: Public domain | W3C validator |