![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difab | Structured version Visualization version GIF version |
Description: Difference of two class abstractions. (Contributed by NM, 23-Oct-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difab | ⊢ ({𝑥 ∣ 𝜑} ∖ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2776 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)} ↔ [𝑦 / 𝑥](𝜑 ∧ ¬ 𝜓)) | |
2 | sban 2059 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥] ¬ 𝜓)) | |
3 | df-clab 2776 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
4 | 3 | bicomi 225 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
5 | sbn 2253 | . . . . 5 ⊢ ([𝑦 / 𝑥] ¬ 𝜓 ↔ ¬ [𝑦 / 𝑥]𝜓) | |
6 | df-clab 2776 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
7 | 5, 6 | xchbinxr 336 | . . . 4 ⊢ ([𝑦 / 𝑥] ¬ 𝜓 ↔ ¬ 𝑦 ∈ {𝑥 ∣ 𝜓}) |
8 | 4, 7 | anbi12i 626 | . . 3 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥] ¬ 𝜓) ↔ (𝑦 ∈ {𝑥 ∣ 𝜑} ∧ ¬ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
9 | 1, 2, 8 | 3bitrri 299 | . 2 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∧ ¬ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ 𝑦 ∈ {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)}) |
10 | 9 | difeqri 4022 | 1 ⊢ ({𝑥 ∣ 𝜑} ∖ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1522 [wsb 2042 ∈ wcel 2081 {cab 2775 ∖ cdif 3856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-v 3439 df-dif 3862 |
This theorem is referenced by: notab 4193 difrab 4197 notrab 4200 |
Copyright terms: Public domain | W3C validator |