| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difab | Structured version Visualization version GIF version | ||
| Description: Difference of two class abstractions. (Contributed by NM, 23-Oct-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difab | ⊢ ({𝑥 ∣ 𝜑} ∖ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2715 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)} ↔ [𝑦 / 𝑥](𝜑 ∧ ¬ 𝜓)) | |
| 2 | sban 2080 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥] ¬ 𝜓)) | |
| 3 | df-clab 2715 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 4 | 3 | bicomi 224 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 5 | sbn 2280 | . . . . 5 ⊢ ([𝑦 / 𝑥] ¬ 𝜓 ↔ ¬ [𝑦 / 𝑥]𝜓) | |
| 6 | df-clab 2715 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 7 | 5, 6 | xchbinxr 335 | . . . 4 ⊢ ([𝑦 / 𝑥] ¬ 𝜓 ↔ ¬ 𝑦 ∈ {𝑥 ∣ 𝜓}) |
| 8 | 4, 7 | anbi12i 628 | . . 3 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥] ¬ 𝜓) ↔ (𝑦 ∈ {𝑥 ∣ 𝜑} ∧ ¬ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
| 9 | 1, 2, 8 | 3bitrri 298 | . 2 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∧ ¬ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ 𝑦 ∈ {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)}) |
| 10 | 9 | difeqri 4128 | 1 ⊢ ({𝑥 ∣ 𝜑} ∖ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 [wsb 2064 ∈ wcel 2108 {cab 2714 ∖ cdif 3948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-dif 3954 |
| This theorem is referenced by: notab 4314 difrab 4318 notrab 4322 |
| Copyright terms: Public domain | W3C validator |