MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difab Structured version   Visualization version   GIF version

Theorem difab 4299
Description: Difference of two class abstractions. (Contributed by NM, 23-Oct-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difab ({𝑥𝜑} ∖ {𝑥𝜓}) = {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)}

Proof of Theorem difab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-clab 2703 . . 3 (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)} ↔ [𝑦 / 𝑥](𝜑 ∧ ¬ 𝜓))
2 sban 2075 . . 3 ([𝑦 / 𝑥](𝜑 ∧ ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥] ¬ 𝜓))
3 df-clab 2703 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
43bicomi 223 . . . 4 ([𝑦 / 𝑥]𝜑𝑦 ∈ {𝑥𝜑})
5 sbn 2269 . . . . 5 ([𝑦 / 𝑥] ¬ 𝜓 ↔ ¬ [𝑦 / 𝑥]𝜓)
6 df-clab 2703 . . . . 5 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
75, 6xchbinxr 334 . . . 4 ([𝑦 / 𝑥] ¬ 𝜓 ↔ ¬ 𝑦 ∈ {𝑥𝜓})
84, 7anbi12i 626 . . 3 (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥] ¬ 𝜓) ↔ (𝑦 ∈ {𝑥𝜑} ∧ ¬ 𝑦 ∈ {𝑥𝜓}))
91, 2, 83bitrri 297 . 2 ((𝑦 ∈ {𝑥𝜑} ∧ ¬ 𝑦 ∈ {𝑥𝜓}) ↔ 𝑦 ∈ {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)})
109difeqri 4120 1 ({𝑥𝜑} ∖ {𝑥𝜓}) = {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 394   = wceq 1533  [wsb 2059  wcel 2098  {cab 2702  cdif 3941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3463  df-dif 3947
This theorem is referenced by:  notab  4303  difrab  4307  notrab  4311
  Copyright terms: Public domain W3C validator