Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetprcnexALT Structured version   Visualization version   GIF version

Theorem fsetprcnexALT 47058
Description: First version of proof for fsetprcnex 8881, which was much more complicated. (Contributed by AV, 14-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fsetprcnexALT (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem fsetprcnexALT
Dummy variables 𝑎 𝑏 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abanssl 4291 . 2 {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ⊆ {𝑓𝑓:𝐴𝐵}
2 n0 4333 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
3 vex 3468 . . . . . . . . . . . 12 𝑦 ∈ V
43a1i 11 . . . . . . . . . . 11 ((𝑦𝐴𝐴𝑉) → 𝑦 ∈ V)
5 fsetsnprcnex 47051 . . . . . . . . . . 11 ((𝑦 ∈ V ∧ 𝐵 ∉ V) → {𝑓𝑓:{𝑦}⟶𝐵} ∉ V)
64, 5sylan 580 . . . . . . . . . 10 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → {𝑓𝑓:{𝑦}⟶𝐵} ∉ V)
7 df-nel 3038 . . . . . . . . . 10 ({𝑓𝑓:{𝑦}⟶𝐵} ∉ V ↔ ¬ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V)
86, 7sylib 218 . . . . . . . . 9 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → ¬ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V)
9 eqid 2736 . . . . . . . . . . . . 13 {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}
10 eqid 2736 . . . . . . . . . . . . 13 {𝑓𝑓:{𝑦}⟶𝐵} = {𝑓𝑓:{𝑦}⟶𝐵}
11 eqid 2736 . . . . . . . . . . . . 13 (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))) = (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦)))
129, 10, 11cfsetsnfsetf1o 47057 . . . . . . . . . . . 12 ((𝐴𝑉𝑦𝐴) → (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)})
1312ancoms 458 . . . . . . . . . . 11 ((𝑦𝐴𝐴𝑉) → (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)})
1413adantr 480 . . . . . . . . . 10 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)})
15 f1ovv 7961 . . . . . . . . . . 11 ((𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} → ({𝑓𝑓:{𝑦}⟶𝐵} ∈ V ↔ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V))
1615bicomd 223 . . . . . . . . . 10 ((𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} → ({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V ↔ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V))
1714, 16syl 17 . . . . . . . . 9 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → ({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V ↔ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V))
188, 17mtbird 325 . . . . . . . 8 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)
1918exp31 419 . . . . . . 7 (𝑦𝐴 → (𝐴𝑉 → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)))
2019exlimiv 1930 . . . . . 6 (∃𝑦 𝑦𝐴 → (𝐴𝑉 → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)))
212, 20sylbi 217 . . . . 5 (𝐴 ≠ ∅ → (𝐴𝑉 → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)))
2221impcom 407 . . . 4 ((𝐴𝑉𝐴 ≠ ∅) → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V))
2322imp 406 . . 3 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)
24 df-nel 3038 . . 3 ({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∉ V ↔ ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)
2523, 24sylibr 234 . 2 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∉ V)
26 prcssprc 5302 . 2 (({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ⊆ {𝑓𝑓:𝐴𝐵} ∧ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
271, 25, 26sylancr 587 1 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2714  wne 2933  wnel 3037  wral 3052  wrex 3061  Vcvv 3464  wss 3931  c0 4313  {csn 4606  cmpt 5206  wf 6532  1-1-ontowf1o 6535  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator