Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetprcnexALT Structured version   Visualization version   GIF version

Theorem fsetprcnexALT 46257
Description: First version of proof for fsetprcnex 8852, which was much more complicated. (Contributed by AV, 14-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fsetprcnexALT (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem fsetprcnexALT
Dummy variables 𝑎 𝑏 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abanssl 4293 . 2 {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ⊆ {𝑓𝑓:𝐴𝐵}
2 n0 4338 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
3 vex 3470 . . . . . . . . . . . 12 𝑦 ∈ V
43a1i 11 . . . . . . . . . . 11 ((𝑦𝐴𝐴𝑉) → 𝑦 ∈ V)
5 fsetsnprcnex 46250 . . . . . . . . . . 11 ((𝑦 ∈ V ∧ 𝐵 ∉ V) → {𝑓𝑓:{𝑦}⟶𝐵} ∉ V)
64, 5sylan 579 . . . . . . . . . 10 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → {𝑓𝑓:{𝑦}⟶𝐵} ∉ V)
7 df-nel 3039 . . . . . . . . . 10 ({𝑓𝑓:{𝑦}⟶𝐵} ∉ V ↔ ¬ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V)
86, 7sylib 217 . . . . . . . . 9 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → ¬ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V)
9 eqid 2724 . . . . . . . . . . . . 13 {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}
10 eqid 2724 . . . . . . . . . . . . 13 {𝑓𝑓:{𝑦}⟶𝐵} = {𝑓𝑓:{𝑦}⟶𝐵}
11 eqid 2724 . . . . . . . . . . . . 13 (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))) = (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦)))
129, 10, 11cfsetsnfsetf1o 46256 . . . . . . . . . . . 12 ((𝐴𝑉𝑦𝐴) → (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)})
1312ancoms 458 . . . . . . . . . . 11 ((𝑦𝐴𝐴𝑉) → (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)})
1413adantr 480 . . . . . . . . . 10 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)})
15 f1ovv 7937 . . . . . . . . . . 11 ((𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} → ({𝑓𝑓:{𝑦}⟶𝐵} ∈ V ↔ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V))
1615bicomd 222 . . . . . . . . . 10 ((𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} → ({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V ↔ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V))
1714, 16syl 17 . . . . . . . . 9 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → ({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V ↔ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V))
188, 17mtbird 325 . . . . . . . 8 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)
1918exp31 419 . . . . . . 7 (𝑦𝐴 → (𝐴𝑉 → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)))
2019exlimiv 1925 . . . . . 6 (∃𝑦 𝑦𝐴 → (𝐴𝑉 → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)))
212, 20sylbi 216 . . . . 5 (𝐴 ≠ ∅ → (𝐴𝑉 → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)))
2221impcom 407 . . . 4 ((𝐴𝑉𝐴 ≠ ∅) → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V))
2322imp 406 . . 3 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)
24 df-nel 3039 . . 3 ({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∉ V ↔ ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)
2523, 24sylibr 233 . 2 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∉ V)
26 prcssprc 5315 . 2 (({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ⊆ {𝑓𝑓:𝐴𝐵} ∧ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
271, 25, 26sylancr 586 1 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wex 1773  wcel 2098  {cab 2701  wne 2932  wnel 3038  wral 3053  wrex 3062  Vcvv 3466  wss 3940  c0 4314  {csn 4620  cmpt 5221  wf 6529  1-1-ontowf1o 6532  cfv 6533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator