Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetprcnexALT Structured version   Visualization version   GIF version

Theorem fsetprcnexALT 44443
Description: First version of proof for fsetprcnex 8608, which was much more complicated. (Contributed by AV, 14-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fsetprcnexALT (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem fsetprcnexALT
Dummy variables 𝑎 𝑏 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abanssl 4232 . 2 {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ⊆ {𝑓𝑓:𝐴𝐵}
2 n0 4277 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
3 vex 3426 . . . . . . . . . . . 12 𝑦 ∈ V
43a1i 11 . . . . . . . . . . 11 ((𝑦𝐴𝐴𝑉) → 𝑦 ∈ V)
5 fsetsnprcnex 44436 . . . . . . . . . . 11 ((𝑦 ∈ V ∧ 𝐵 ∉ V) → {𝑓𝑓:{𝑦}⟶𝐵} ∉ V)
64, 5sylan 579 . . . . . . . . . 10 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → {𝑓𝑓:{𝑦}⟶𝐵} ∉ V)
7 df-nel 3049 . . . . . . . . . 10 ({𝑓𝑓:{𝑦}⟶𝐵} ∉ V ↔ ¬ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V)
86, 7sylib 217 . . . . . . . . 9 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → ¬ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V)
9 eqid 2738 . . . . . . . . . . . . 13 {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}
10 eqid 2738 . . . . . . . . . . . . 13 {𝑓𝑓:{𝑦}⟶𝐵} = {𝑓𝑓:{𝑦}⟶𝐵}
11 eqid 2738 . . . . . . . . . . . . 13 (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))) = (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦)))
129, 10, 11cfsetsnfsetf1o 44442 . . . . . . . . . . . 12 ((𝐴𝑉𝑦𝐴) → (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)})
1312ancoms 458 . . . . . . . . . . 11 ((𝑦𝐴𝐴𝑉) → (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)})
1413adantr 480 . . . . . . . . . 10 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)})
15 f1ovv 7774 . . . . . . . . . . 11 ((𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} → ({𝑓𝑓:{𝑦}⟶𝐵} ∈ V ↔ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V))
1615bicomd 222 . . . . . . . . . 10 ((𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} → ({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V ↔ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V))
1714, 16syl 17 . . . . . . . . 9 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → ({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V ↔ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V))
188, 17mtbird 324 . . . . . . . 8 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)
1918exp31 419 . . . . . . 7 (𝑦𝐴 → (𝐴𝑉 → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)))
2019exlimiv 1934 . . . . . 6 (∃𝑦 𝑦𝐴 → (𝐴𝑉 → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)))
212, 20sylbi 216 . . . . 5 (𝐴 ≠ ∅ → (𝐴𝑉 → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)))
2221impcom 407 . . . 4 ((𝐴𝑉𝐴 ≠ ∅) → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V))
2322imp 406 . . 3 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)
24 df-nel 3049 . . 3 ({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∉ V ↔ ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)
2523, 24sylibr 233 . 2 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∉ V)
26 prcssprc 5244 . 2 (({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ⊆ {𝑓𝑓:𝐴𝐵} ∧ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
271, 25, 26sylancr 586 1 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wnel 3048  wral 3063  wrex 3064  Vcvv 3422  wss 3883  c0 4253  {csn 4558  cmpt 5153  wf 6414  1-1-ontowf1o 6417  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator