Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetprcnexALT Structured version   Visualization version   GIF version

Theorem fsetprcnexALT 44556
Description: First version of proof for fsetprcnex 8650, which was much more complicated. (Contributed by AV, 14-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fsetprcnexALT (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem fsetprcnexALT
Dummy variables 𝑎 𝑏 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abanssl 4235 . 2 {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ⊆ {𝑓𝑓:𝐴𝐵}
2 n0 4280 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
3 vex 3436 . . . . . . . . . . . 12 𝑦 ∈ V
43a1i 11 . . . . . . . . . . 11 ((𝑦𝐴𝐴𝑉) → 𝑦 ∈ V)
5 fsetsnprcnex 44549 . . . . . . . . . . 11 ((𝑦 ∈ V ∧ 𝐵 ∉ V) → {𝑓𝑓:{𝑦}⟶𝐵} ∉ V)
64, 5sylan 580 . . . . . . . . . 10 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → {𝑓𝑓:{𝑦}⟶𝐵} ∉ V)
7 df-nel 3050 . . . . . . . . . 10 ({𝑓𝑓:{𝑦}⟶𝐵} ∉ V ↔ ¬ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V)
86, 7sylib 217 . . . . . . . . 9 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → ¬ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V)
9 eqid 2738 . . . . . . . . . . . . 13 {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}
10 eqid 2738 . . . . . . . . . . . . 13 {𝑓𝑓:{𝑦}⟶𝐵} = {𝑓𝑓:{𝑦}⟶𝐵}
11 eqid 2738 . . . . . . . . . . . . 13 (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))) = (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦)))
129, 10, 11cfsetsnfsetf1o 44555 . . . . . . . . . . . 12 ((𝐴𝑉𝑦𝐴) → (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)})
1312ancoms 459 . . . . . . . . . . 11 ((𝑦𝐴𝐴𝑉) → (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)})
1413adantr 481 . . . . . . . . . 10 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)})
15 f1ovv 7800 . . . . . . . . . . 11 ((𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} → ({𝑓𝑓:{𝑦}⟶𝐵} ∈ V ↔ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V))
1615bicomd 222 . . . . . . . . . 10 ((𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} → ({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V ↔ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V))
1714, 16syl 17 . . . . . . . . 9 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → ({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V ↔ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V))
188, 17mtbird 325 . . . . . . . 8 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)
1918exp31 420 . . . . . . 7 (𝑦𝐴 → (𝐴𝑉 → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)))
2019exlimiv 1933 . . . . . 6 (∃𝑦 𝑦𝐴 → (𝐴𝑉 → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)))
212, 20sylbi 216 . . . . 5 (𝐴 ≠ ∅ → (𝐴𝑉 → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)))
2221impcom 408 . . . 4 ((𝐴𝑉𝐴 ≠ ∅) → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V))
2322imp 407 . . 3 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)
24 df-nel 3050 . . 3 ({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∉ V ↔ ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)
2523, 24sylibr 233 . 2 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∉ V)
26 prcssprc 5249 . 2 (({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ⊆ {𝑓𝑓:𝐴𝐵} ∧ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
271, 25, 26sylancr 587 1 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wne 2943  wnel 3049  wral 3064  wrex 3065  Vcvv 3432  wss 3887  c0 4256  {csn 4561  cmpt 5157  wf 6429  1-1-ontowf1o 6432  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator