Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetprcnexALT Structured version   Visualization version   GIF version

Theorem fsetprcnexALT 44064
Description: First version of proof for fsetprcnex 8457, which was much more complicated. (Contributed by AV, 14-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fsetprcnexALT (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem fsetprcnexALT
Dummy variables 𝑎 𝑏 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abanssl 4207 . 2 {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ⊆ {𝑓𝑓:𝐴𝐵}
2 n0 4247 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
3 vex 3413 . . . . . . . . . . . 12 𝑦 ∈ V
43a1i 11 . . . . . . . . . . 11 ((𝑦𝐴𝐴𝑉) → 𝑦 ∈ V)
5 fsetsnprcnex 44057 . . . . . . . . . . 11 ((𝑦 ∈ V ∧ 𝐵 ∉ V) → {𝑓𝑓:{𝑦}⟶𝐵} ∉ V)
64, 5sylan 583 . . . . . . . . . 10 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → {𝑓𝑓:{𝑦}⟶𝐵} ∉ V)
7 df-nel 3056 . . . . . . . . . 10 ({𝑓𝑓:{𝑦}⟶𝐵} ∉ V ↔ ¬ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V)
86, 7sylib 221 . . . . . . . . 9 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → ¬ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V)
9 eqid 2758 . . . . . . . . . . . . 13 {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}
10 eqid 2758 . . . . . . . . . . . . 13 {𝑓𝑓:{𝑦}⟶𝐵} = {𝑓𝑓:{𝑦}⟶𝐵}
11 eqid 2758 . . . . . . . . . . . . 13 (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))) = (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦)))
129, 10, 11cfsetsnfsetf1o 44063 . . . . . . . . . . . 12 ((𝐴𝑉𝑦𝐴) → (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)})
1312ancoms 462 . . . . . . . . . . 11 ((𝑦𝐴𝐴𝑉) → (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)})
1413adantr 484 . . . . . . . . . 10 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → (𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)})
15 f1ovv 7669 . . . . . . . . . . 11 ((𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} → ({𝑓𝑓:{𝑦}⟶𝐵} ∈ V ↔ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V))
1615bicomd 226 . . . . . . . . . 10 ((𝑔 ∈ {𝑓𝑓:{𝑦}⟶𝐵} ↦ (𝑎𝐴 ↦ (𝑔𝑦))):{𝑓𝑓:{𝑦}⟶𝐵}–1-1-onto→{𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} → ({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V ↔ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V))
1714, 16syl 17 . . . . . . . . 9 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → ({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V ↔ {𝑓𝑓:{𝑦}⟶𝐵} ∈ V))
188, 17mtbird 328 . . . . . . . 8 (((𝑦𝐴𝐴𝑉) ∧ 𝐵 ∉ V) → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)
1918exp31 423 . . . . . . 7 (𝑦𝐴 → (𝐴𝑉 → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)))
2019exlimiv 1931 . . . . . 6 (∃𝑦 𝑦𝐴 → (𝐴𝑉 → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)))
212, 20sylbi 220 . . . . 5 (𝐴 ≠ ∅ → (𝐴𝑉 → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)))
2221impcom 411 . . . 4 ((𝐴𝑉𝐴 ≠ ∅) → (𝐵 ∉ V → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V))
2322imp 410 . . 3 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)
24 df-nel 3056 . . 3 ({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∉ V ↔ ¬ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∈ V)
2523, 24sylibr 237 . 2 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∉ V)
26 prcssprc 5199 . 2 (({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ⊆ {𝑓𝑓:𝐴𝐵} ∧ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
271, 25, 26sylancr 590 1 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  {cab 2735  wne 2951  wnel 3055  wral 3070  wrex 3071  Vcvv 3409  wss 3860  c0 4227  {csn 4525  cmpt 5116  wf 6336  1-1-ontowf1o 6339  cfv 6340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator