MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablcmnd Structured version   Visualization version   GIF version

Theorem ablcmnd 19685
Description: An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024.)
Hypothesis
Ref Expression
ablcmnd.1 (𝜑𝐺 ∈ Abel)
Assertion
Ref Expression
ablcmnd (𝜑𝐺 ∈ CMnd)

Proof of Theorem ablcmnd
StepHypRef Expression
1 ablcmnd.1 . 2 (𝜑𝐺 ∈ Abel)
2 ablcmn 19684 . 2 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
31, 2syl 17 1 (𝜑𝐺 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  CMndccmn 19677  Abelcabl 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-in 3912  df-abl 19680
This theorem is referenced by:  ringcmnd  20187  elrgspnsubrunlem2  33198  primrootscoprmpow  42072  primrootscoprbij  42075  aks6d1c6isolem1  42147  aks6d1c6isolem2  42148  aks6d1c6lem5  42150
  Copyright terms: Public domain W3C validator