| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablcmnd | Structured version Visualization version GIF version | ||
| Description: An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| ablcmnd.1 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| Ref | Expression |
|---|---|
| ablcmnd | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcmnd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 2 | ablcmn 19778 | . 2 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 CMndccmn 19771 Abelcabl 19772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 df-in 3940 df-abl 19774 |
| This theorem is referenced by: ringcmnd 20254 elrgspnsubrunlem2 33198 primrootscoprmpow 42041 primrootscoprbij 42044 aks6d1c6isolem1 42116 aks6d1c6isolem2 42117 aks6d1c6lem5 42119 |
| Copyright terms: Public domain | W3C validator |