Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ablcmnd Structured version   Visualization version   GIF version

Theorem ablcmnd 40165
Description: An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024.)
Hypothesis
Ref Expression
ablcmnd.1 (𝜑𝐺 ∈ Abel)
Assertion
Ref Expression
ablcmnd (𝜑𝐺 ∈ CMnd)

Proof of Theorem ablcmnd
StepHypRef Expression
1 ablcmnd.1 . 2 (𝜑𝐺 ∈ Abel)
2 ablcmn 19308 . 2 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
31, 2syl 17 1 (𝜑𝐺 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  CMndccmn 19301  Abelcabl 19302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-abl 19304
This theorem is referenced by:  ringcmnd  40171
  Copyright terms: Public domain W3C validator