![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablcmnd | Structured version Visualization version GIF version |
Description: An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024.) |
Ref | Expression |
---|---|
ablcmnd.1 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
Ref | Expression |
---|---|
ablcmnd | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablcmnd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
2 | ablcmn 19703 | . 2 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 CMndccmn 19696 Abelcabl 19697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3955 df-abl 19699 |
This theorem is referenced by: ringcmnd 20179 |
Copyright terms: Public domain | W3C validator |