| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablcmnd | Structured version Visualization version GIF version | ||
| Description: An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| ablcmnd.1 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| Ref | Expression |
|---|---|
| ablcmnd | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcmnd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 2 | ablcmn 19773 | . 2 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 CMndccmn 19766 Abelcabl 19767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-in 3938 df-abl 19769 |
| This theorem is referenced by: ringcmnd 20249 elrgspnsubrunlem2 33248 primrootscoprmpow 42117 primrootscoprbij 42120 aks6d1c6isolem1 42192 aks6d1c6isolem2 42193 aks6d1c6lem5 42195 |
| Copyright terms: Public domain | W3C validator |