![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablcmnd | Structured version Visualization version GIF version |
Description: An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024.) |
Ref | Expression |
---|---|
ablcmnd.1 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
Ref | Expression |
---|---|
ablcmnd | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablcmnd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
2 | ablcmn 19655 | . 2 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 CMndccmn 19648 Abelcabl 19649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-abl 19651 |
This theorem is referenced by: ringcmnd 20101 |
Copyright terms: Public domain | W3C validator |