Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablcmn | Structured version Visualization version GIF version |
Description: An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
ablcmn | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabl 19305 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Grpcgrp 18492 CMndccmn 19301 Abelcabl 19302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-abl 19304 |
This theorem is referenced by: ablcom 19319 abl32 19323 ablsub4 19329 mulgdi 19343 ghmabl 19349 ghmplusg 19362 ablcntzd 19373 prdsabld 19378 gsumsubgcl 19436 gsummulgz 19459 gsuminv 19462 gsumsub 19464 telgsumfzslem 19504 telgsums 19509 ringcmn 19735 lmodcmn 20086 clmsub4 24175 lgseisenlem4 26431 ablcmnd 40165 |
Copyright terms: Public domain | W3C validator |