| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablcmn | Structured version Visualization version GIF version | ||
| Description: An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| ablcmn | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 19698 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18847 CMndccmn 19694 Abelcabl 19695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-abl 19697 |
| This theorem is referenced by: ablcmnd 19702 ablcom 19713 abl32 19717 ablsub4 19724 mulgdi 19740 ghmabl 19746 ghmplusg 19760 ablcntzd 19771 prdsabld 19776 gsumsubgcl 19834 gsummulgz 19857 gsuminv 19860 gsumsub 19862 telgsumfzslem 19902 telgsums 19907 ringcmn 20202 lmodcmn 20848 clmsub4 25039 lgseisenlem4 27322 primrootspoweq0 42087 aks6d1c6lem4 42154 |
| Copyright terms: Public domain | W3C validator |