| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablcmn | Structured version Visualization version GIF version | ||
| Description: An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| ablcmn | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 19663 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18812 CMndccmn 19659 Abelcabl 19660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-in 3910 df-abl 19662 |
| This theorem is referenced by: ablcmnd 19667 ablcom 19678 abl32 19682 ablsub4 19689 mulgdi 19705 ghmabl 19711 ghmplusg 19725 ablcntzd 19736 prdsabld 19741 gsumsubgcl 19799 gsummulgz 19822 gsuminv 19825 gsumsub 19827 telgsumfzslem 19867 telgsums 19872 ringcmn 20167 lmodcmn 20813 clmsub4 25004 lgseisenlem4 27287 primrootspoweq0 42079 aks6d1c6lem4 42146 |
| Copyright terms: Public domain | W3C validator |