| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablcmn | Structured version Visualization version GIF version | ||
| Description: An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| ablcmn | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 19696 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Grpcgrp 18846 CMndccmn 19692 Abelcabl 19693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-abl 19695 |
| This theorem is referenced by: ablcmnd 19700 ablcom 19711 abl32 19715 ablsub4 19722 mulgdi 19738 ghmabl 19744 ghmplusg 19758 ablcntzd 19769 prdsabld 19774 gsumsubgcl 19832 gsummulgz 19855 gsuminv 19858 gsumsub 19860 telgsumfzslem 19900 telgsums 19905 ringcmn 20200 lmodcmn 20843 clmsub4 25033 lgseisenlem4 27316 primrootspoweq0 42147 aks6d1c6lem4 42214 |
| Copyright terms: Public domain | W3C validator |