![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablcmn | Structured version Visualization version GIF version |
Description: An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
ablcmn | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabl 19751 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
2 | 1 | simprbi 495 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 Grpcgrp 18898 CMndccmn 19747 Abelcabl 19748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3463 df-in 3951 df-abl 19750 |
This theorem is referenced by: ablcmnd 19755 ablcom 19766 abl32 19770 ablsub4 19777 mulgdi 19793 ghmabl 19799 ghmplusg 19813 ablcntzd 19824 prdsabld 19829 gsumsubgcl 19887 gsummulgz 19910 gsuminv 19913 gsumsub 19915 telgsumfzslem 19955 telgsums 19960 ringcmn 20230 lmodcmn 20805 clmsub4 25077 lgseisenlem4 27356 primrootspoweq0 41709 aks6d1c6lem4 41776 |
Copyright terms: Public domain | W3C validator |