![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablcmn | Structured version Visualization version GIF version |
Description: An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
ablcmn | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabl 19816 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Grpcgrp 18963 CMndccmn 19812 Abelcabl 19813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-in 3969 df-abl 19815 |
This theorem is referenced by: ablcmnd 19820 ablcom 19831 abl32 19835 ablsub4 19842 mulgdi 19858 ghmabl 19864 ghmplusg 19878 ablcntzd 19889 prdsabld 19894 gsumsubgcl 19952 gsummulgz 19975 gsuminv 19978 gsumsub 19980 telgsumfzslem 20020 telgsums 20025 ringcmn 20295 lmodcmn 20924 clmsub4 25152 lgseisenlem4 27436 primrootspoweq0 42087 aks6d1c6lem4 42154 |
Copyright terms: Public domain | W3C validator |