| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablcmn | Structured version Visualization version GIF version | ||
| Description: An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| ablcmn | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 19721 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18872 CMndccmn 19717 Abelcabl 19718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-abl 19720 |
| This theorem is referenced by: ablcmnd 19725 ablcom 19736 abl32 19740 ablsub4 19747 mulgdi 19763 ghmabl 19769 ghmplusg 19783 ablcntzd 19794 prdsabld 19799 gsumsubgcl 19857 gsummulgz 19880 gsuminv 19883 gsumsub 19885 telgsumfzslem 19925 telgsums 19930 ringcmn 20198 lmodcmn 20823 clmsub4 25013 lgseisenlem4 27296 primrootspoweq0 42101 aks6d1c6lem4 42168 |
| Copyright terms: Public domain | W3C validator |