| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablcmn | Structured version Visualization version GIF version | ||
| Description: An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| ablcmn | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 19765 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Grpcgrp 18916 CMndccmn 19761 Abelcabl 19762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-abl 19764 |
| This theorem is referenced by: ablcmnd 19769 ablcom 19780 abl32 19784 ablsub4 19791 mulgdi 19807 ghmabl 19813 ghmplusg 19827 ablcntzd 19838 prdsabld 19843 gsumsubgcl 19901 gsummulgz 19924 gsuminv 19927 gsumsub 19929 telgsumfzslem 19969 telgsums 19974 ringcmn 20242 lmodcmn 20867 clmsub4 25057 lgseisenlem4 27341 primrootspoweq0 42119 aks6d1c6lem4 42186 |
| Copyright terms: Public domain | W3C validator |