Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablcmn | Structured version Visualization version GIF version |
Description: An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
ablcmn | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabl 19401 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
2 | 1 | simprbi 497 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 Grpcgrp 18588 CMndccmn 19397 Abelcabl 19398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-in 3899 df-abl 19400 |
This theorem is referenced by: ablcom 19415 abl32 19419 ablsub4 19425 mulgdi 19439 ghmabl 19445 ghmplusg 19458 ablcntzd 19469 prdsabld 19474 gsumsubgcl 19532 gsummulgz 19555 gsuminv 19558 gsumsub 19560 telgsumfzslem 19600 telgsums 19605 ringcmn 19831 lmodcmn 20182 clmsub4 24280 lgseisenlem4 26537 ablcmnd 40248 |
Copyright terms: Public domain | W3C validator |