![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablcmn | Structured version Visualization version GIF version |
Description: An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
ablcmn | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabl 19826 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Grpcgrp 18973 CMndccmn 19822 Abelcabl 19823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-abl 19825 |
This theorem is referenced by: ablcmnd 19830 ablcom 19841 abl32 19845 ablsub4 19852 mulgdi 19868 ghmabl 19874 ghmplusg 19888 ablcntzd 19899 prdsabld 19904 gsumsubgcl 19962 gsummulgz 19985 gsuminv 19988 gsumsub 19990 telgsumfzslem 20030 telgsums 20035 ringcmn 20305 lmodcmn 20930 clmsub4 25158 lgseisenlem4 27440 primrootspoweq0 42063 aks6d1c6lem4 42130 |
Copyright terms: Public domain | W3C validator |