Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablcmn | Structured version Visualization version GIF version |
Description: An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
ablcmn | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabl 19390 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
2 | 1 | simprbi 497 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Grpcgrp 18577 CMndccmn 19386 Abelcabl 19387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-abl 19389 |
This theorem is referenced by: ablcom 19404 abl32 19408 ablsub4 19414 mulgdi 19428 ghmabl 19434 ghmplusg 19447 ablcntzd 19458 prdsabld 19463 gsumsubgcl 19521 gsummulgz 19544 gsuminv 19547 gsumsub 19549 telgsumfzslem 19589 telgsums 19594 ringcmn 19820 lmodcmn 20171 clmsub4 24269 lgseisenlem4 26526 ablcmnd 40239 |
Copyright terms: Public domain | W3C validator |