| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablcmn | Structured version Visualization version GIF version | ||
| Description: An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| ablcmn | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 19690 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18841 CMndccmn 19686 Abelcabl 19687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-abl 19689 |
| This theorem is referenced by: ablcmnd 19694 ablcom 19705 abl32 19709 ablsub4 19716 mulgdi 19732 ghmabl 19738 ghmplusg 19752 ablcntzd 19763 prdsabld 19768 gsumsubgcl 19826 gsummulgz 19849 gsuminv 19852 gsumsub 19854 telgsumfzslem 19894 telgsums 19899 ringcmn 20167 lmodcmn 20792 clmsub4 24982 lgseisenlem4 27265 primrootspoweq0 42067 aks6d1c6lem4 42134 |
| Copyright terms: Public domain | W3C validator |