Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naecoms-o Structured version   Visualization version   GIF version

Theorem naecoms-o 36938
Description: A commutation rule for distinct variable specifiers. Version of naecoms 2429 using ax-c11 36898. (Contributed by NM, 2-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
nalequcoms-o.1 (¬ ∀𝑥 𝑥 = 𝑦𝜑)
Assertion
Ref Expression
naecoms-o (¬ ∀𝑦 𝑦 = 𝑥𝜑)

Proof of Theorem naecoms-o
StepHypRef Expression
1 aecom-o 36912 . . 3 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
2 nalequcoms-o.1 . . 3 (¬ ∀𝑥 𝑥 = 𝑦𝜑)
31, 2nsyl4 158 . 2 𝜑 → ∀𝑦 𝑦 = 𝑥)
43con1i 147 1 (¬ ∀𝑦 𝑦 = 𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-c5 36894  ax-c4 36895  ax-c7 36896  ax-c10 36897  ax-c11 36898  ax-c9 36901
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by:  ax12inda2ALT  36957
  Copyright terms: Public domain W3C validator