![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > naecoms-o | Structured version Visualization version GIF version |
Description: A commutation rule for distinct variable specifiers. Version of naecoms 2450 using ax-c11 34955. (Contributed by NM, 2-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nalequcoms-o.1 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) |
Ref | Expression |
---|---|
naecoms-o | ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aecom-o 34969 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | |
2 | nalequcoms-o.1 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | nsyl4 158 | . 2 ⊢ (¬ 𝜑 → ∀𝑦 𝑦 = 𝑥) |
4 | 3 | con1i 147 | 1 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-c5 34951 ax-c4 34952 ax-c7 34953 ax-c10 34954 ax-c11 34955 ax-c9 34958 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1879 |
This theorem is referenced by: ax12inda2ALT 35014 |
Copyright terms: Public domain | W3C validator |