Step | Hyp | Ref
| Expression |
1 | | hbae-o 36479 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) |
2 | | hbae-o 36479 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑡∀𝑥 𝑥 = 𝑦) |
3 | | ax7 2023 |
. . . . 5
⊢ (𝑥 = 𝑡 → (𝑥 = 𝑦 → 𝑡 = 𝑦)) |
4 | 3 | spimvw 2002 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → 𝑡 = 𝑦) |
5 | 2, 4 | alrimih 1825 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑡 𝑡 = 𝑦) |
6 | | ax7 2023 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → (𝑦 = 𝑡 → 𝑢 = 𝑡)) |
7 | | equcomi 2024 |
. . . . . . . 8
⊢ (𝑢 = 𝑡 → 𝑡 = 𝑢) |
8 | 6, 7 | syl6 35 |
. . . . . . 7
⊢ (𝑦 = 𝑢 → (𝑦 = 𝑡 → 𝑡 = 𝑢)) |
9 | 8 | spimvw 2002 |
. . . . . 6
⊢
(∀𝑦 𝑦 = 𝑡 → 𝑡 = 𝑢) |
10 | 9 | aecoms-o 36478 |
. . . . 5
⊢
(∀𝑡 𝑡 = 𝑦 → 𝑡 = 𝑢) |
11 | 10 | axc4i-o 36474 |
. . . 4
⊢
(∀𝑡 𝑡 = 𝑦 → ∀𝑡 𝑡 = 𝑢) |
12 | | hbae-o 36479 |
. . . . 5
⊢
(∀𝑡 𝑡 = 𝑢 → ∀𝑣∀𝑡 𝑡 = 𝑢) |
13 | | ax7 2023 |
. . . . . 6
⊢ (𝑡 = 𝑣 → (𝑡 = 𝑢 → 𝑣 = 𝑢)) |
14 | 13 | spimvw 2002 |
. . . . 5
⊢
(∀𝑡 𝑡 = 𝑢 → 𝑣 = 𝑢) |
15 | 12, 14 | alrimih 1825 |
. . . 4
⊢
(∀𝑡 𝑡 = 𝑢 → ∀𝑣 𝑣 = 𝑢) |
16 | | aecom-o 36477 |
. . . 4
⊢
(∀𝑣 𝑣 = 𝑢 → ∀𝑢 𝑢 = 𝑣) |
17 | 11, 15, 16 | 3syl 18 |
. . 3
⊢
(∀𝑡 𝑡 = 𝑦 → ∀𝑢 𝑢 = 𝑣) |
18 | | ax7 2023 |
. . . 4
⊢ (𝑢 = 𝑤 → (𝑢 = 𝑣 → 𝑤 = 𝑣)) |
19 | 18 | spimvw 2002 |
. . 3
⊢
(∀𝑢 𝑢 = 𝑣 → 𝑤 = 𝑣) |
20 | 5, 17, 19 | 3syl 18 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → 𝑤 = 𝑣) |
21 | 1, 20 | alrimih 1825 |
1
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑤 = 𝑣) |