| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aev-o | Structured version Visualization version GIF version | ||
| Description: A "distinctor elimination" lemma with no disjoint variable conditions on variables in the consequent, proved without using ax-c16 38893. Version of aev 2057 using ax-c11 38888. (Contributed by NM, 8-Nov-2006.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| aev-o | ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑤 = 𝑣) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbae-o 38904 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | |
| 2 | hbae-o 38904 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑡∀𝑥 𝑥 = 𝑦) | |
| 3 | ax7 2015 | . . . . 5 ⊢ (𝑥 = 𝑡 → (𝑥 = 𝑦 → 𝑡 = 𝑦)) | |
| 4 | 3 | spimvw 1995 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝑡 = 𝑦) |
| 5 | 2, 4 | alrimih 1824 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑡 𝑡 = 𝑦) |
| 6 | ax7 2015 | . . . . . . . 8 ⊢ (𝑦 = 𝑢 → (𝑦 = 𝑡 → 𝑢 = 𝑡)) | |
| 7 | equcomi 2016 | . . . . . . . 8 ⊢ (𝑢 = 𝑡 → 𝑡 = 𝑢) | |
| 8 | 6, 7 | syl6 35 | . . . . . . 7 ⊢ (𝑦 = 𝑢 → (𝑦 = 𝑡 → 𝑡 = 𝑢)) |
| 9 | 8 | spimvw 1995 | . . . . . 6 ⊢ (∀𝑦 𝑦 = 𝑡 → 𝑡 = 𝑢) |
| 10 | 9 | aecoms-o 38903 | . . . . 5 ⊢ (∀𝑡 𝑡 = 𝑦 → 𝑡 = 𝑢) |
| 11 | 10 | axc4i-o 38899 | . . . 4 ⊢ (∀𝑡 𝑡 = 𝑦 → ∀𝑡 𝑡 = 𝑢) |
| 12 | hbae-o 38904 | . . . . 5 ⊢ (∀𝑡 𝑡 = 𝑢 → ∀𝑣∀𝑡 𝑡 = 𝑢) | |
| 13 | ax7 2015 | . . . . . 6 ⊢ (𝑡 = 𝑣 → (𝑡 = 𝑢 → 𝑣 = 𝑢)) | |
| 14 | 13 | spimvw 1995 | . . . . 5 ⊢ (∀𝑡 𝑡 = 𝑢 → 𝑣 = 𝑢) |
| 15 | 12, 14 | alrimih 1824 | . . . 4 ⊢ (∀𝑡 𝑡 = 𝑢 → ∀𝑣 𝑣 = 𝑢) |
| 16 | aecom-o 38902 | . . . 4 ⊢ (∀𝑣 𝑣 = 𝑢 → ∀𝑢 𝑢 = 𝑣) | |
| 17 | 11, 15, 16 | 3syl 18 | . . 3 ⊢ (∀𝑡 𝑡 = 𝑦 → ∀𝑢 𝑢 = 𝑣) |
| 18 | ax7 2015 | . . . 4 ⊢ (𝑢 = 𝑤 → (𝑢 = 𝑣 → 𝑤 = 𝑣)) | |
| 19 | 18 | spimvw 1995 | . . 3 ⊢ (∀𝑢 𝑢 = 𝑣 → 𝑤 = 𝑣) |
| 20 | 5, 17, 19 | 3syl 18 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝑤 = 𝑣) |
| 21 | 1, 20 | alrimih 1824 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑤 = 𝑣) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-11 2157 ax-c5 38884 ax-c4 38885 ax-c7 38886 ax-c10 38887 ax-c11 38888 ax-c9 38891 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: axc16g-o 38935 |
| Copyright terms: Public domain | W3C validator |