Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aev-o Structured version   Visualization version   GIF version

Theorem aev-o 36507
Description: A "distinctor elimination" lemma with no restrictions on variables in the consequent, proved without using ax-c16 36468. Version of aev 2062 using ax-c11 36463. (Contributed by NM, 8-Nov-2006.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
aev-o (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑤 = 𝑣)
Distinct variable group:   𝑥,𝑦

Proof of Theorem aev-o
Dummy variables 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbae-o 36479 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
2 hbae-o 36479 . . . 4 (∀𝑥 𝑥 = 𝑦 → ∀𝑡𝑥 𝑥 = 𝑦)
3 ax7 2023 . . . . 5 (𝑥 = 𝑡 → (𝑥 = 𝑦𝑡 = 𝑦))
43spimvw 2002 . . . 4 (∀𝑥 𝑥 = 𝑦𝑡 = 𝑦)
52, 4alrimih 1825 . . 3 (∀𝑥 𝑥 = 𝑦 → ∀𝑡 𝑡 = 𝑦)
6 ax7 2023 . . . . . . . 8 (𝑦 = 𝑢 → (𝑦 = 𝑡𝑢 = 𝑡))
7 equcomi 2024 . . . . . . . 8 (𝑢 = 𝑡𝑡 = 𝑢)
86, 7syl6 35 . . . . . . 7 (𝑦 = 𝑢 → (𝑦 = 𝑡𝑡 = 𝑢))
98spimvw 2002 . . . . . 6 (∀𝑦 𝑦 = 𝑡𝑡 = 𝑢)
109aecoms-o 36478 . . . . 5 (∀𝑡 𝑡 = 𝑦𝑡 = 𝑢)
1110axc4i-o 36474 . . . 4 (∀𝑡 𝑡 = 𝑦 → ∀𝑡 𝑡 = 𝑢)
12 hbae-o 36479 . . . . 5 (∀𝑡 𝑡 = 𝑢 → ∀𝑣𝑡 𝑡 = 𝑢)
13 ax7 2023 . . . . . 6 (𝑡 = 𝑣 → (𝑡 = 𝑢𝑣 = 𝑢))
1413spimvw 2002 . . . . 5 (∀𝑡 𝑡 = 𝑢𝑣 = 𝑢)
1512, 14alrimih 1825 . . . 4 (∀𝑡 𝑡 = 𝑢 → ∀𝑣 𝑣 = 𝑢)
16 aecom-o 36477 . . . 4 (∀𝑣 𝑣 = 𝑢 → ∀𝑢 𝑢 = 𝑣)
1711, 15, 163syl 18 . . 3 (∀𝑡 𝑡 = 𝑦 → ∀𝑢 𝑢 = 𝑣)
18 ax7 2023 . . . 4 (𝑢 = 𝑤 → (𝑢 = 𝑣𝑤 = 𝑣))
1918spimvw 2002 . . 3 (∀𝑢 𝑢 = 𝑣𝑤 = 𝑣)
205, 17, 193syl 18 . 2 (∀𝑥 𝑥 = 𝑦𝑤 = 𝑣)
211, 20alrimih 1825 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑤 = 𝑣)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-11 2158  ax-c5 36459  ax-c4 36460  ax-c7 36461  ax-c10 36462  ax-c11 36463  ax-c9 36466
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782
This theorem is referenced by:  axc16g-o  36510
  Copyright terms: Public domain W3C validator