| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aecoms-o | Structured version Visualization version GIF version | ||
| Description: A commutation rule for identical variable specifiers. Version of aecoms 2431 using ax-c11 38829. (Contributed by NM, 10-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| alequcoms-o.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) |
| Ref | Expression |
|---|---|
| aecoms-o | ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aecom-o 38843 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦) | |
| 2 | alequcoms-o.1 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-c5 38825 ax-c4 38826 ax-c7 38827 ax-c10 38828 ax-c11 38829 ax-c9 38832 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 |
| This theorem is referenced by: hbae-o 38845 dral1-o 38846 dvelimf-o 38871 aev-o 38873 ax12indalem 38887 ax12inda2ALT 38888 |
| Copyright terms: Public domain | W3C validator |