![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aecoms-o | Structured version Visualization version GIF version |
Description: A commutation rule for identical variable specifiers. Version of aecoms 2427 using ax-c11 37399. (Contributed by NM, 10-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
alequcoms-o.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) |
Ref | Expression |
---|---|
aecoms-o | ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aecom-o 37413 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦) | |
2 | alequcoms-o.1 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-c5 37395 ax-c4 37396 ax-c7 37397 ax-c10 37398 ax-c11 37399 ax-c9 37402 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 |
This theorem is referenced by: hbae-o 37415 dral1-o 37416 dvelimf-o 37441 aev-o 37443 ax12indalem 37457 ax12inda2ALT 37458 |
Copyright terms: Public domain | W3C validator |