MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alral Structured version   Visualization version   GIF version

Theorem alral 3081
Description: Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.)
Assertion
Ref Expression
alral (∀𝑥𝜑 → ∀𝑥𝐴 𝜑)

Proof of Theorem alral
StepHypRef Expression
1 ala1 1811 . 2 (∀𝑥𝜑 → ∀𝑥(𝑥𝐴𝜑))
2 df-ral 3068 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
31, 2sylibr 234 1 (∀𝑥𝜑 → ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wcel 2108  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-ral 3068
This theorem is referenced by:  abnex  7792  find  7935  brdom5  10598  brdom4  10599  hashgt23el  14473  prodeq2w  15958  rpnnen2lem12  16273  umgr2cycllem  35108  umgr2cycl  35109  elpotr  35745  fvineqsnf1  37376  fvineqsneq  37378  phpreu  37564  ordelordALTVD  44838  rexrsb  47015
  Copyright terms: Public domain W3C validator