MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alral Structured version   Visualization version   GIF version

Theorem alral 3062
Description: Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.)
Assertion
Ref Expression
alral (∀𝑥𝜑 → ∀𝑥𝐴 𝜑)

Proof of Theorem alral
StepHypRef Expression
1 ala1 1814 . 2 (∀𝑥𝜑 → ∀𝑥(𝑥𝐴𝜑))
2 df-ral 3049 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
31, 2sylibr 234 1 (∀𝑥𝜑 → ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wcel 2113  wral 3048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-ral 3049
This theorem is referenced by:  abnex  7696  find  7831  brdom5  10427  brdom4  10428  hashgt23el  14333  prodeq2w  15819  rpnnen2lem12  16136  umgr2cycllem  35205  umgr2cycl  35206  elpotr  35844  fvineqsnf1  37475  fvineqsneq  37477  phpreu  37664  ordelordALTVD  44983  ssclaxsep  45099  rexrsb  47224
  Copyright terms: Public domain W3C validator