| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alral | Structured version Visualization version GIF version | ||
| Description: Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.) |
| Ref | Expression |
|---|---|
| alral | ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ala1 1813 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | df-ral 3052 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2108 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3052 |
| This theorem is referenced by: abnex 7751 find 7891 brdom5 10543 brdom4 10544 hashgt23el 14442 prodeq2w 15926 rpnnen2lem12 16243 umgr2cycllem 35162 umgr2cycl 35163 elpotr 35799 fvineqsnf1 37428 fvineqsneq 37430 phpreu 37628 ordelordALTVD 44891 ssclaxsep 45007 rexrsb 47129 |
| Copyright terms: Public domain | W3C validator |