![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alral | Structured version Visualization version GIF version |
Description: Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.) |
Ref | Expression |
---|---|
alral | ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ala1 1811 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
3 | 1, 2 | sylibr 234 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ral 3068 |
This theorem is referenced by: abnex 7792 find 7935 brdom5 10598 brdom4 10599 hashgt23el 14473 prodeq2w 15958 rpnnen2lem12 16273 umgr2cycllem 35108 umgr2cycl 35109 elpotr 35745 fvineqsnf1 37376 fvineqsneq 37378 phpreu 37564 ordelordALTVD 44838 rexrsb 47015 |
Copyright terms: Public domain | W3C validator |