MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alral Structured version   Visualization version   GIF version

Theorem alral 3079
Description: Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.)
Assertion
Ref Expression
alral (∀𝑥𝜑 → ∀𝑥𝐴 𝜑)

Proof of Theorem alral
StepHypRef Expression
1 ala1 1817 . 2 (∀𝑥𝜑 → ∀𝑥(𝑥𝐴𝜑))
2 df-ral 3068 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
31, 2sylibr 233 1 (∀𝑥𝜑 → ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wcel 2108  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-ral 3068
This theorem is referenced by:  abnex  7585  find  7717  findOLD  7718  brdom5  10216  brdom4  10217  hashgt23el  14067  prodeq2w  15550  rpnnen2lem12  15862  umgr2cycllem  33002  umgr2cycl  33003  elpotr  33663  fvineqsnf1  35508  fvineqsneq  35510  phpreu  35688  ordelordALTVD  42376  rexrsb  44479
  Copyright terms: Public domain W3C validator