![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alral | Structured version Visualization version GIF version |
Description: Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.) |
Ref | Expression |
---|---|
alral | ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ala1 1816 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | df-ral 3063 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∈ wcel 2107 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ral 3063 |
This theorem is referenced by: abnex 7744 find 7887 findOLD 7888 brdom5 10524 brdom4 10525 hashgt23el 14384 prodeq2w 15856 rpnnen2lem12 16168 umgr2cycllem 34131 umgr2cycl 34132 elpotr 34753 fvineqsnf1 36291 fvineqsneq 36293 phpreu 36472 ordelordALTVD 43628 rexrsb 45808 |
Copyright terms: Public domain | W3C validator |