![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alral | Structured version Visualization version GIF version |
Description: Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.) |
Ref | Expression |
---|---|
alral | ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ala1 1807 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | df-ral 3051 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 ∈ wcel 2098 ∀wral 3050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 |
This theorem depends on definitions: df-bi 206 df-ral 3051 |
This theorem is referenced by: abnex 7760 find 7903 brdom5 10554 brdom4 10555 hashgt23el 14419 prodeq2w 15892 rpnnen2lem12 16205 umgr2cycllem 34881 umgr2cycl 34882 elpotr 35508 fvineqsnf1 37020 fvineqsneq 37022 phpreu 37208 ordelordALTVD 44448 rexrsb 46618 |
Copyright terms: Public domain | W3C validator |