| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alral | Structured version Visualization version GIF version | ||
| Description: Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.) |
| Ref | Expression |
|---|---|
| alral | ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ala1 1813 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | df-ral 3046 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3046 |
| This theorem is referenced by: abnex 7736 find 7874 brdom5 10489 brdom4 10490 hashgt23el 14396 prodeq2w 15883 rpnnen2lem12 16200 umgr2cycllem 35134 umgr2cycl 35135 elpotr 35776 fvineqsnf1 37405 fvineqsneq 37407 phpreu 37605 ordelordALTVD 44863 ssclaxsep 44979 rexrsb 47105 |
| Copyright terms: Public domain | W3C validator |