| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alral | Structured version Visualization version GIF version | ||
| Description: Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.) |
| Ref | Expression |
|---|---|
| alral | ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ala1 1814 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | df-ral 3049 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2113 ∀wral 3048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ral 3049 |
| This theorem is referenced by: abnex 7696 find 7831 brdom5 10427 brdom4 10428 hashgt23el 14333 prodeq2w 15819 rpnnen2lem12 16136 umgr2cycllem 35205 umgr2cycl 35206 elpotr 35844 fvineqsnf1 37475 fvineqsneq 37477 phpreu 37664 ordelordALTVD 44983 ssclaxsep 45099 rexrsb 47224 |
| Copyright terms: Public domain | W3C validator |