MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alral Structured version   Visualization version   GIF version

Theorem alral 3059
Description: Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.)
Assertion
Ref Expression
alral (∀𝑥𝜑 → ∀𝑥𝐴 𝜑)

Proof of Theorem alral
StepHypRef Expression
1 ala1 1813 . 2 (∀𝑥𝜑 → ∀𝑥(𝑥𝐴𝜑))
2 df-ral 3046 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
31, 2sylibr 234 1 (∀𝑥𝜑 → ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wcel 2109  wral 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ral 3046
This theorem is referenced by:  abnex  7736  find  7874  brdom5  10489  brdom4  10490  hashgt23el  14396  prodeq2w  15883  rpnnen2lem12  16200  umgr2cycllem  35134  umgr2cycl  35135  elpotr  35776  fvineqsnf1  37405  fvineqsneq  37407  phpreu  37605  ordelordALTVD  44863  ssclaxsep  44979  rexrsb  47105
  Copyright terms: Public domain W3C validator