| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alral | Structured version Visualization version GIF version | ||
| Description: Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.) |
| Ref | Expression |
|---|---|
| alral | ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ala1 1813 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: abnex 7697 find 7835 brdom5 10442 brdom4 10443 hashgt23el 14349 prodeq2w 15835 rpnnen2lem12 16152 umgr2cycllem 35112 umgr2cycl 35113 elpotr 35754 fvineqsnf1 37383 fvineqsneq 37385 phpreu 37583 ordelordALTVD 44840 ssclaxsep 44956 rexrsb 47085 |
| Copyright terms: Public domain | W3C validator |