MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftr2c Structured version   Visualization version   GIF version

Theorem dftr2c 5206
Description: Variant of dftr2 5205 with commuted quantifiers, useful for shortening proofs and avoiding ax-11 2153. (Contributed by BTernaryTau, 28-Dec-2024.)
Assertion
Ref Expression
dftr2c (Tr 𝐴 ↔ ∀𝑦𝑥((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem dftr2c
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dftr2 5205 . 2 (Tr 𝐴 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
2 elequ1 2112 . . . . 5 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
32anbi1d 630 . . . 4 (𝑥 = 𝑧 → ((𝑥𝑦𝑦𝐴) ↔ (𝑧𝑦𝑦𝐴)))
4 eleq1w 2819 . . . 4 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
53, 4imbi12d 344 . . 3 (𝑥 = 𝑧 → (((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ ((𝑧𝑦𝑦𝐴) → 𝑧𝐴)))
6 elequ2 2120 . . . . 5 (𝑦 = 𝑧 → (𝑥𝑦𝑥𝑧))
7 eleq1w 2819 . . . . 5 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
86, 7anbi12d 631 . . . 4 (𝑦 = 𝑧 → ((𝑥𝑦𝑦𝐴) ↔ (𝑥𝑧𝑧𝐴)))
98imbi1d 341 . . 3 (𝑦 = 𝑧 → (((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ ((𝑥𝑧𝑧𝐴) → 𝑥𝐴)))
105, 9alcomw 2046 . 2 (∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ ∀𝑦𝑥((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
111, 10bitri 274 1 (Tr 𝐴 ↔ ∀𝑦𝑥((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1538  wcel 2105  Tr wtr 5203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3442  df-in 3903  df-ss 3913  df-uni 4850  df-tr 5204
This theorem is referenced by:  dftr5  5207
  Copyright terms: Public domain W3C validator