Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dftr2c | Structured version Visualization version GIF version |
Description: Variant of dftr2 5205 with commuted quantifiers, useful for shortening proofs and avoiding ax-11 2153. (Contributed by BTernaryTau, 28-Dec-2024.) |
Ref | Expression |
---|---|
dftr2c | ⊢ (Tr 𝐴 ↔ ∀𝑦∀𝑥((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr2 5205 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) | |
2 | elequ1 2112 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦)) | |
3 | 2 | anbi1d 630 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴))) |
4 | eleq1w 2819 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
5 | 3, 4 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑧 → (((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))) |
6 | elequ2 2120 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧)) | |
7 | eleq1w 2819 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
8 | 6, 7 | anbi12d 631 | . . . 4 ⊢ (𝑦 = 𝑧 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴))) |
9 | 8 | imbi1d 341 | . . 3 ⊢ (𝑦 = 𝑧 → (((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) ↔ ((𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴) → 𝑥 ∈ 𝐴))) |
10 | 5, 9 | alcomw 2046 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) ↔ ∀𝑦∀𝑥((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
11 | 1, 10 | bitri 274 | 1 ⊢ (Tr 𝐴 ↔ ∀𝑦∀𝑥((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1538 ∈ wcel 2105 Tr wtr 5203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3442 df-in 3903 df-ss 3913 df-uni 4850 df-tr 5204 |
This theorem is referenced by: dftr5 5207 |
Copyright terms: Public domain | W3C validator |