MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unissb Structured version   Visualization version   GIF version

Theorem unissb 4963
Description: Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.) Avoid ax-11 2158. (Revised by BTernaryTau, 28-Dec-2024.)
Assertion
Ref Expression
unissb ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem unissb
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 4934 . . . . . 6 (𝑦 𝐴 ↔ ∃𝑥(𝑦𝑥𝑥𝐴))
21imbi1i 349 . . . . 5 ((𝑦 𝐴𝑦𝐵) ↔ (∃𝑥(𝑦𝑥𝑥𝐴) → 𝑦𝐵))
3 19.23v 1941 . . . . 5 (∀𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (∃𝑥(𝑦𝑥𝑥𝐴) → 𝑦𝐵))
42, 3bitr4i 278 . . . 4 ((𝑦 𝐴𝑦𝐵) ↔ ∀𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵))
54albii 1817 . . 3 (∀𝑦(𝑦 𝐴𝑦𝐵) ↔ ∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵))
6 elequ1 2115 . . . . . . 7 (𝑦 = 𝑧 → (𝑦𝑥𝑧𝑥))
76anbi1d 630 . . . . . 6 (𝑦 = 𝑧 → ((𝑦𝑥𝑥𝐴) ↔ (𝑧𝑥𝑥𝐴)))
8 eleq1w 2827 . . . . . 6 (𝑦 = 𝑧 → (𝑦𝐵𝑧𝐵))
97, 8imbi12d 344 . . . . 5 (𝑦 = 𝑧 → (((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ((𝑧𝑥𝑥𝐴) → 𝑧𝐵)))
10 elequ2 2123 . . . . . . 7 (𝑥 = 𝑧 → (𝑦𝑥𝑦𝑧))
11 eleq1w 2827 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1210, 11anbi12d 631 . . . . . 6 (𝑥 = 𝑧 → ((𝑦𝑥𝑥𝐴) ↔ (𝑦𝑧𝑧𝐴)))
1312imbi1d 341 . . . . 5 (𝑥 = 𝑧 → (((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ((𝑦𝑧𝑧𝐴) → 𝑦𝐵)))
149, 13alcomw 2044 . . . 4 (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵))
15 19.21v 1938 . . . . . 6 (∀𝑦(𝑥𝐴 → (𝑦𝑥𝑦𝐵)) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝑥𝑦𝐵)))
16 impexp 450 . . . . . . . 8 (((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (𝑦𝑥 → (𝑥𝐴𝑦𝐵)))
17 bi2.04 387 . . . . . . . 8 ((𝑦𝑥 → (𝑥𝐴𝑦𝐵)) ↔ (𝑥𝐴 → (𝑦𝑥𝑦𝐵)))
1816, 17bitri 275 . . . . . . 7 (((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (𝑥𝐴 → (𝑦𝑥𝑦𝐵)))
1918albii 1817 . . . . . 6 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑦(𝑥𝐴 → (𝑦𝑥𝑦𝐵)))
20 df-ss 3993 . . . . . . 7 (𝑥𝐵 ↔ ∀𝑦(𝑦𝑥𝑦𝐵))
2120imbi2i 336 . . . . . 6 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝑥𝑦𝐵)))
2215, 19, 213bitr4i 303 . . . . 5 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (𝑥𝐴𝑥𝐵))
2322albii 1817 . . . 4 (∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2414, 23bitri 275 . . 3 (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
255, 24bitri 275 . 2 (∀𝑦(𝑦 𝐴𝑦𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
26 df-ss 3993 . 2 ( 𝐴𝐵 ↔ ∀𝑦(𝑦 𝐴𝑦𝐵))
27 df-ral 3068 . 2 (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2825, 26, 273bitr4i 303 1 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wex 1777  wcel 2108  wral 3067  wss 3976   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-ss 3993  df-uni 4932
This theorem is referenced by:  uniss2  4965  ssunieq  4967  sspwuni  5123  pwssb  5124  ordunisssuc  6501  sorpssuni  7767  uniordint  7837  sbthlem1  9149  ordunifi  9354  isfinite2  9362  cflim2  10332  fin23lem16  10404  fin23lem29  10410  fin1a2lem11  10479  fin1a2lem13  10481  itunitc  10490  zorng  10573  wuncval2  10816  suplem1pr  11121  suplem2pr  11122  mrcuni  17679  ipodrsfi  18609  mrelatlub  18632  subgint  19190  efgval  19759  toponmre  23122  neips  23142  neiuni  23151  alexsubALTlem2  24077  alexsubALTlem3  24078  tgpconncompeqg  24141  unidmvol  25595  oldf  27914  tglnunirn  28574  uniinn0  32573  elrspunidl  33421  ssdifidllem  33449  ssmxidllem  33466  locfinreflem  33786  zarclsiin  33817  zarclsint  33818  zarcmplem  33827  sxbrsigalem0  34236  dya2iocuni  34248  dya2iocucvr  34249  carsguni  34273  topjoin  36331  fnejoin1  36334  fnejoin2  36335  ovoliunnfl  37622  voliunnfl  37624  volsupnfl  37625  intidl  37989  unichnidl  37991  onuniintrab  43187  onsupmaxb  43200  onsupnub  43210  mnuunid  44246  expanduniss  44262  salexct  46255  unilbss  48549  unilbeu  48657  ipolublem  48658  setrec1lem2  48780  setrec2fun  48784
  Copyright terms: Public domain W3C validator