Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unissb | Structured version Visualization version GIF version |
Description: Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.) |
Ref | Expression |
---|---|
unissb | ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 4842 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
2 | 1 | imbi1i 350 | . . . . 5 ⊢ ((𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) |
3 | 19.23v 1945 | . . . . 5 ⊢ (∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) | |
4 | 2, 3 | bitr4i 277 | . . . 4 ⊢ ((𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ ∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) |
5 | 4 | albii 1822 | . . 3 ⊢ (∀𝑦(𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) |
6 | alcom 2156 | . . . 4 ⊢ (∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) | |
7 | 19.21v 1942 | . . . . . 6 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) | |
8 | impexp 451 | . . . . . . . 8 ⊢ (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵))) | |
9 | bi2.04 389 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵)) ↔ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) | |
10 | 8, 9 | bitri 274 | . . . . . . 7 ⊢ (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) |
11 | 10 | albii 1822 | . . . . . 6 ⊢ (∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) |
12 | dfss2 3907 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵)) | |
13 | 12 | imbi2i 336 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) |
14 | 7, 11, 13 | 3bitr4i 303 | . . . . 5 ⊢ (∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
15 | 14 | albii 1822 | . . . 4 ⊢ (∀𝑥∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
16 | 6, 15 | bitri 274 | . . 3 ⊢ (∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
17 | 5, 16 | bitri 274 | . 2 ⊢ (∀𝑦(𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
18 | dfss2 3907 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵)) | |
19 | df-ral 3069 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) | |
20 | 17, 18, 19 | 3bitr4i 303 | 1 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 |
This theorem is referenced by: uniss2 4874 ssunieq 4876 sspwuni 5029 pwssb 5030 ordunisssuc 6368 sorpssuni 7585 uniordint 7651 sbthlem1 8870 ordunifi 9064 isfinite2 9072 cflim2 10019 fin23lem16 10091 fin23lem29 10097 fin1a2lem11 10166 fin1a2lem13 10168 itunitc 10177 zorng 10260 wuncval2 10503 suplem1pr 10808 suplem2pr 10809 mrcuni 17330 ipodrsfi 18257 mrelatlub 18280 subgint 18779 efgval 19323 toponmre 22244 neips 22264 neiuni 22273 alexsubALTlem2 23199 alexsubALTlem3 23200 tgpconncompeqg 23263 unidmvol 24705 tglnunirn 26909 uniinn0 30890 elrspunidl 31606 ssmxidllem 31641 locfinreflem 31790 zarclsiin 31821 zarclsint 31822 zarcmplem 31831 sxbrsigalem0 32238 dya2iocuni 32250 dya2iocucvr 32251 carsguni 32275 oldf 34041 topjoin 34554 fnejoin1 34557 fnejoin2 34558 ovoliunnfl 35819 voliunnfl 35821 volsupnfl 35822 intidl 36187 unichnidl 36189 mnuunid 41895 expanduniss 41911 salexct 43873 unilbss 46163 unilbeu 46271 ipolublem 46272 setrec1lem2 46394 setrec2fun 46398 |
Copyright terms: Public domain | W3C validator |