MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unissb Structured version   Visualization version   GIF version

Theorem unissb 4903
Description: Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.) Avoid ax-11 2158. (Revised by BTernaryTau, 28-Dec-2024.)
Assertion
Ref Expression
unissb ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem unissb
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 4874 . . . . . 6 (𝑦 𝐴 ↔ ∃𝑥(𝑦𝑥𝑥𝐴))
21imbi1i 349 . . . . 5 ((𝑦 𝐴𝑦𝐵) ↔ (∃𝑥(𝑦𝑥𝑥𝐴) → 𝑦𝐵))
3 19.23v 1942 . . . . 5 (∀𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (∃𝑥(𝑦𝑥𝑥𝐴) → 𝑦𝐵))
42, 3bitr4i 278 . . . 4 ((𝑦 𝐴𝑦𝐵) ↔ ∀𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵))
54albii 1819 . . 3 (∀𝑦(𝑦 𝐴𝑦𝐵) ↔ ∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵))
6 elequ1 2116 . . . . . . 7 (𝑦 = 𝑧 → (𝑦𝑥𝑧𝑥))
76anbi1d 631 . . . . . 6 (𝑦 = 𝑧 → ((𝑦𝑥𝑥𝐴) ↔ (𝑧𝑥𝑥𝐴)))
8 eleq1w 2811 . . . . . 6 (𝑦 = 𝑧 → (𝑦𝐵𝑧𝐵))
97, 8imbi12d 344 . . . . 5 (𝑦 = 𝑧 → (((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ((𝑧𝑥𝑥𝐴) → 𝑧𝐵)))
10 elequ2 2124 . . . . . . 7 (𝑥 = 𝑧 → (𝑦𝑥𝑦𝑧))
11 eleq1w 2811 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1210, 11anbi12d 632 . . . . . 6 (𝑥 = 𝑧 → ((𝑦𝑥𝑥𝐴) ↔ (𝑦𝑧𝑧𝐴)))
1312imbi1d 341 . . . . 5 (𝑥 = 𝑧 → (((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ((𝑦𝑧𝑧𝐴) → 𝑦𝐵)))
149, 13alcomw 2045 . . . 4 (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵))
15 19.21v 1939 . . . . . 6 (∀𝑦(𝑥𝐴 → (𝑦𝑥𝑦𝐵)) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝑥𝑦𝐵)))
16 impexp 450 . . . . . . . 8 (((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (𝑦𝑥 → (𝑥𝐴𝑦𝐵)))
17 bi2.04 387 . . . . . . . 8 ((𝑦𝑥 → (𝑥𝐴𝑦𝐵)) ↔ (𝑥𝐴 → (𝑦𝑥𝑦𝐵)))
1816, 17bitri 275 . . . . . . 7 (((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (𝑥𝐴 → (𝑦𝑥𝑦𝐵)))
1918albii 1819 . . . . . 6 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑦(𝑥𝐴 → (𝑦𝑥𝑦𝐵)))
20 df-ss 3931 . . . . . . 7 (𝑥𝐵 ↔ ∀𝑦(𝑦𝑥𝑦𝐵))
2120imbi2i 336 . . . . . 6 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝑥𝑦𝐵)))
2215, 19, 213bitr4i 303 . . . . 5 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (𝑥𝐴𝑥𝐵))
2322albii 1819 . . . 4 (∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2414, 23bitri 275 . . 3 (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
255, 24bitri 275 . 2 (∀𝑦(𝑦 𝐴𝑦𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
26 df-ss 3931 . 2 ( 𝐴𝐵 ↔ ∀𝑦(𝑦 𝐴𝑦𝐵))
27 df-ral 3045 . 2 (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2825, 26, 273bitr4i 303 1 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wex 1779  wcel 2109  wral 3044  wss 3914   cuni 4871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3449  df-ss 3931  df-uni 4872
This theorem is referenced by:  uniss2  4905  ssunieq  4907  sspwuni  5064  pwssb  5065  ordunisssuc  6440  sorpssuni  7708  uniordint  7777  sbthlem1  9051  ordunifi  9237  isfinite2  9245  cflim2  10216  fin23lem16  10288  fin23lem29  10294  fin1a2lem11  10363  fin1a2lem13  10365  itunitc  10374  zorng  10457  wuncval2  10700  suplem1pr  11005  suplem2pr  11006  mrcuni  17582  ipodrsfi  18498  mrelatlub  18521  subgint  19082  efgval  19647  toponmre  22980  neips  23000  neiuni  23009  alexsubALTlem2  23935  alexsubALTlem3  23936  tgpconncompeqg  23999  unidmvol  25442  oldf  27765  tglnunirn  28475  uniinn0  32479  elrspunidl  33399  ssdifidllem  33427  ssmxidllem  33444  locfinreflem  33830  zarclsiin  33861  zarclsint  33862  zarcmplem  33871  sxbrsigalem0  34262  dya2iocuni  34274  dya2iocucvr  34275  carsguni  34299  topjoin  36353  fnejoin1  36356  fnejoin2  36357  ovoliunnfl  37656  voliunnfl  37658  volsupnfl  37659  intidl  38023  unichnidl  38025  onuniintrab  43215  onsupmaxb  43228  onsupnub  43238  mnuunid  44266  expanduniss  44282  salexct  46332  unilbss  48806  unilbeu  48973  ipolublem  48974  setrec1lem2  49677  setrec2fun  49681
  Copyright terms: Public domain W3C validator