MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unissb Structured version   Visualization version   GIF version

Theorem unissb 4879
Description: Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.)
Assertion
Ref Expression
unissb ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem unissb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eluni 4848 . . . . . 6 (𝑦 𝐴 ↔ ∃𝑥(𝑦𝑥𝑥𝐴))
21imbi1i 350 . . . . 5 ((𝑦 𝐴𝑦𝐵) ↔ (∃𝑥(𝑦𝑥𝑥𝐴) → 𝑦𝐵))
3 19.23v 1949 . . . . 5 (∀𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (∃𝑥(𝑦𝑥𝑥𝐴) → 𝑦𝐵))
42, 3bitr4i 277 . . . 4 ((𝑦 𝐴𝑦𝐵) ↔ ∀𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵))
54albii 1826 . . 3 (∀𝑦(𝑦 𝐴𝑦𝐵) ↔ ∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵))
6 alcom 2160 . . . 4 (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵))
7 19.21v 1946 . . . . . 6 (∀𝑦(𝑥𝐴 → (𝑦𝑥𝑦𝐵)) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝑥𝑦𝐵)))
8 impexp 451 . . . . . . . 8 (((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (𝑦𝑥 → (𝑥𝐴𝑦𝐵)))
9 bi2.04 389 . . . . . . . 8 ((𝑦𝑥 → (𝑥𝐴𝑦𝐵)) ↔ (𝑥𝐴 → (𝑦𝑥𝑦𝐵)))
108, 9bitri 274 . . . . . . 7 (((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (𝑥𝐴 → (𝑦𝑥𝑦𝐵)))
1110albii 1826 . . . . . 6 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑦(𝑥𝐴 → (𝑦𝑥𝑦𝐵)))
12 dfss2 3912 . . . . . . 7 (𝑥𝐵 ↔ ∀𝑦(𝑦𝑥𝑦𝐵))
1312imbi2i 336 . . . . . 6 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝑥𝑦𝐵)))
147, 11, 133bitr4i 303 . . . . 5 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (𝑥𝐴𝑥𝐵))
1514albii 1826 . . . 4 (∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
166, 15bitri 274 . . 3 (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
175, 16bitri 274 . 2 (∀𝑦(𝑦 𝐴𝑦𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
18 dfss2 3912 . 2 ( 𝐴𝐵 ↔ ∀𝑦(𝑦 𝐴𝑦𝐵))
19 df-ral 3071 . 2 (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2017, 18, 193bitr4i 303 1 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1540  wex 1786  wcel 2110  wral 3066  wss 3892   cuni 4845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-v 3433  df-in 3899  df-ss 3909  df-uni 4846
This theorem is referenced by:  uniss2  4880  ssunieq  4882  sspwuni  5034  pwssb  5035  ordunisssuc  6367  sorpssuni  7579  uniordint  7645  sbthlem1  8852  ordunifi  9042  isfinite2  9050  cflim2  10020  fin23lem16  10092  fin23lem29  10098  fin1a2lem11  10167  fin1a2lem13  10169  itunitc  10178  zorng  10261  wuncval2  10504  suplem1pr  10809  suplem2pr  10810  mrcuni  17328  ipodrsfi  18255  mrelatlub  18278  subgint  18777  efgval  19321  toponmre  22242  neips  22262  neiuni  22271  alexsubALTlem2  23197  alexsubALTlem3  23198  tgpconncompeqg  23261  unidmvol  24703  tglnunirn  26907  uniinn0  30886  elrspunidl  31602  ssmxidllem  31637  locfinreflem  31786  zarclsiin  31817  zarclsint  31818  zarcmplem  31827  sxbrsigalem0  32234  dya2iocuni  32246  dya2iocucvr  32247  carsguni  32271  oldf  34037  topjoin  34550  fnejoin1  34553  fnejoin2  34554  ovoliunnfl  35815  voliunnfl  35817  volsupnfl  35818  intidl  36183  unichnidl  36185  mnuunid  41865  expanduniss  41881  salexct  43844  unilbss  46132  unilbeu  46240  ipolublem  46241  setrec1lem2  46363  setrec2fun  46367
  Copyright terms: Public domain W3C validator