MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unissb Structured version   Visualization version   GIF version

Theorem unissb 4873
Description: Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.)
Assertion
Ref Expression
unissb ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem unissb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eluni 4842 . . . . . 6 (𝑦 𝐴 ↔ ∃𝑥(𝑦𝑥𝑥𝐴))
21imbi1i 350 . . . . 5 ((𝑦 𝐴𝑦𝐵) ↔ (∃𝑥(𝑦𝑥𝑥𝐴) → 𝑦𝐵))
3 19.23v 1945 . . . . 5 (∀𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (∃𝑥(𝑦𝑥𝑥𝐴) → 𝑦𝐵))
42, 3bitr4i 277 . . . 4 ((𝑦 𝐴𝑦𝐵) ↔ ∀𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵))
54albii 1822 . . 3 (∀𝑦(𝑦 𝐴𝑦𝐵) ↔ ∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵))
6 alcom 2156 . . . 4 (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵))
7 19.21v 1942 . . . . . 6 (∀𝑦(𝑥𝐴 → (𝑦𝑥𝑦𝐵)) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝑥𝑦𝐵)))
8 impexp 451 . . . . . . . 8 (((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (𝑦𝑥 → (𝑥𝐴𝑦𝐵)))
9 bi2.04 389 . . . . . . . 8 ((𝑦𝑥 → (𝑥𝐴𝑦𝐵)) ↔ (𝑥𝐴 → (𝑦𝑥𝑦𝐵)))
108, 9bitri 274 . . . . . . 7 (((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (𝑥𝐴 → (𝑦𝑥𝑦𝐵)))
1110albii 1822 . . . . . 6 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑦(𝑥𝐴 → (𝑦𝑥𝑦𝐵)))
12 dfss2 3907 . . . . . . 7 (𝑥𝐵 ↔ ∀𝑦(𝑦𝑥𝑦𝐵))
1312imbi2i 336 . . . . . 6 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝑥𝑦𝐵)))
147, 11, 133bitr4i 303 . . . . 5 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (𝑥𝐴𝑥𝐵))
1514albii 1822 . . . 4 (∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
166, 15bitri 274 . . 3 (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
175, 16bitri 274 . 2 (∀𝑦(𝑦 𝐴𝑦𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
18 dfss2 3907 . 2 ( 𝐴𝐵 ↔ ∀𝑦(𝑦 𝐴𝑦𝐵))
19 df-ral 3069 . 2 (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2017, 18, 193bitr4i 303 1 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  wex 1782  wcel 2106  wral 3064  wss 3887   cuni 4839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-in 3894  df-ss 3904  df-uni 4840
This theorem is referenced by:  uniss2  4874  ssunieq  4876  sspwuni  5029  pwssb  5030  ordunisssuc  6368  sorpssuni  7585  uniordint  7651  sbthlem1  8870  ordunifi  9064  isfinite2  9072  cflim2  10019  fin23lem16  10091  fin23lem29  10097  fin1a2lem11  10166  fin1a2lem13  10168  itunitc  10177  zorng  10260  wuncval2  10503  suplem1pr  10808  suplem2pr  10809  mrcuni  17330  ipodrsfi  18257  mrelatlub  18280  subgint  18779  efgval  19323  toponmre  22244  neips  22264  neiuni  22273  alexsubALTlem2  23199  alexsubALTlem3  23200  tgpconncompeqg  23263  unidmvol  24705  tglnunirn  26909  uniinn0  30890  elrspunidl  31606  ssmxidllem  31641  locfinreflem  31790  zarclsiin  31821  zarclsint  31822  zarcmplem  31831  sxbrsigalem0  32238  dya2iocuni  32250  dya2iocucvr  32251  carsguni  32275  oldf  34041  topjoin  34554  fnejoin1  34557  fnejoin2  34558  ovoliunnfl  35819  voliunnfl  35821  volsupnfl  35822  intidl  36187  unichnidl  36189  mnuunid  41895  expanduniss  41911  salexct  43873  unilbss  46163  unilbeu  46271  ipolublem  46272  setrec1lem2  46394  setrec2fun  46398
  Copyright terms: Public domain W3C validator