MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unissb Structured version   Visualization version   GIF version

Theorem unissb 4915
Description: Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.) Avoid ax-11 2157. (Revised by BTernaryTau, 28-Dec-2024.)
Assertion
Ref Expression
unissb ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem unissb
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 4886 . . . . . 6 (𝑦 𝐴 ↔ ∃𝑥(𝑦𝑥𝑥𝐴))
21imbi1i 349 . . . . 5 ((𝑦 𝐴𝑦𝐵) ↔ (∃𝑥(𝑦𝑥𝑥𝐴) → 𝑦𝐵))
3 19.23v 1942 . . . . 5 (∀𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (∃𝑥(𝑦𝑥𝑥𝐴) → 𝑦𝐵))
42, 3bitr4i 278 . . . 4 ((𝑦 𝐴𝑦𝐵) ↔ ∀𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵))
54albii 1819 . . 3 (∀𝑦(𝑦 𝐴𝑦𝐵) ↔ ∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵))
6 elequ1 2115 . . . . . . 7 (𝑦 = 𝑧 → (𝑦𝑥𝑧𝑥))
76anbi1d 631 . . . . . 6 (𝑦 = 𝑧 → ((𝑦𝑥𝑥𝐴) ↔ (𝑧𝑥𝑥𝐴)))
8 eleq1w 2817 . . . . . 6 (𝑦 = 𝑧 → (𝑦𝐵𝑧𝐵))
97, 8imbi12d 344 . . . . 5 (𝑦 = 𝑧 → (((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ((𝑧𝑥𝑥𝐴) → 𝑧𝐵)))
10 elequ2 2123 . . . . . . 7 (𝑥 = 𝑧 → (𝑦𝑥𝑦𝑧))
11 eleq1w 2817 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1210, 11anbi12d 632 . . . . . 6 (𝑥 = 𝑧 → ((𝑦𝑥𝑥𝐴) ↔ (𝑦𝑧𝑧𝐴)))
1312imbi1d 341 . . . . 5 (𝑥 = 𝑧 → (((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ((𝑦𝑧𝑧𝐴) → 𝑦𝐵)))
149, 13alcomw 2044 . . . 4 (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵))
15 19.21v 1939 . . . . . 6 (∀𝑦(𝑥𝐴 → (𝑦𝑥𝑦𝐵)) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝑥𝑦𝐵)))
16 impexp 450 . . . . . . . 8 (((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (𝑦𝑥 → (𝑥𝐴𝑦𝐵)))
17 bi2.04 387 . . . . . . . 8 ((𝑦𝑥 → (𝑥𝐴𝑦𝐵)) ↔ (𝑥𝐴 → (𝑦𝑥𝑦𝐵)))
1816, 17bitri 275 . . . . . . 7 (((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (𝑥𝐴 → (𝑦𝑥𝑦𝐵)))
1918albii 1819 . . . . . 6 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑦(𝑥𝐴 → (𝑦𝑥𝑦𝐵)))
20 df-ss 3943 . . . . . . 7 (𝑥𝐵 ↔ ∀𝑦(𝑦𝑥𝑦𝐵))
2120imbi2i 336 . . . . . 6 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝑥𝑦𝐵)))
2215, 19, 213bitr4i 303 . . . . 5 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ (𝑥𝐴𝑥𝐵))
2322albii 1819 . . . 4 (∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2414, 23bitri 275 . . 3 (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
255, 24bitri 275 . 2 (∀𝑦(𝑦 𝐴𝑦𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
26 df-ss 3943 . 2 ( 𝐴𝐵 ↔ ∀𝑦(𝑦 𝐴𝑦𝐵))
27 df-ral 3052 . 2 (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2825, 26, 273bitr4i 303 1 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wex 1779  wcel 2108  wral 3051  wss 3926   cuni 4883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-v 3461  df-ss 3943  df-uni 4884
This theorem is referenced by:  uniss2  4917  ssunieq  4919  sspwuni  5076  pwssb  5077  ordunisssuc  6460  sorpssuni  7726  uniordint  7795  sbthlem1  9097  ordunifi  9298  isfinite2  9306  cflim2  10277  fin23lem16  10349  fin23lem29  10355  fin1a2lem11  10424  fin1a2lem13  10426  itunitc  10435  zorng  10518  wuncval2  10761  suplem1pr  11066  suplem2pr  11067  mrcuni  17633  ipodrsfi  18549  mrelatlub  18572  subgint  19133  efgval  19698  toponmre  23031  neips  23051  neiuni  23060  alexsubALTlem2  23986  alexsubALTlem3  23987  tgpconncompeqg  24050  unidmvol  25494  oldf  27817  tglnunirn  28527  uniinn0  32531  elrspunidl  33443  ssdifidllem  33471  ssmxidllem  33488  locfinreflem  33871  zarclsiin  33902  zarclsint  33903  zarcmplem  33912  sxbrsigalem0  34303  dya2iocuni  34315  dya2iocucvr  34316  carsguni  34340  topjoin  36383  fnejoin1  36386  fnejoin2  36387  ovoliunnfl  37686  voliunnfl  37688  volsupnfl  37689  intidl  38053  unichnidl  38055  onuniintrab  43250  onsupmaxb  43263  onsupnub  43273  mnuunid  44301  expanduniss  44317  salexct  46363  unilbss  48796  unilbeu  48959  ipolublem  48960  setrec1lem2  49552  setrec2fun  49556
  Copyright terms: Public domain W3C validator