Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unissb | Structured version Visualization version GIF version |
Description: Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.) |
Ref | Expression |
---|---|
unissb | ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 4839 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
2 | 1 | imbi1i 349 | . . . . 5 ⊢ ((𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) |
3 | 19.23v 1946 | . . . . 5 ⊢ (∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) | |
4 | 2, 3 | bitr4i 277 | . . . 4 ⊢ ((𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ ∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) |
5 | 4 | albii 1823 | . . 3 ⊢ (∀𝑦(𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) |
6 | alcom 2158 | . . . 4 ⊢ (∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) | |
7 | 19.21v 1943 | . . . . . 6 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) | |
8 | impexp 450 | . . . . . . . 8 ⊢ (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵))) | |
9 | bi2.04 388 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵)) ↔ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) | |
10 | 8, 9 | bitri 274 | . . . . . . 7 ⊢ (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) |
11 | 10 | albii 1823 | . . . . . 6 ⊢ (∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) |
12 | dfss2 3903 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵)) | |
13 | 12 | imbi2i 335 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) |
14 | 7, 11, 13 | 3bitr4i 302 | . . . . 5 ⊢ (∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
15 | 14 | albii 1823 | . . . 4 ⊢ (∀𝑥∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
16 | 6, 15 | bitri 274 | . . 3 ⊢ (∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
17 | 5, 16 | bitri 274 | . 2 ⊢ (∀𝑦(𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
18 | dfss2 3903 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵)) | |
19 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) | |
20 | 17, 18, 19 | 3bitr4i 302 | 1 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∃wex 1783 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 |
This theorem is referenced by: uniss2 4871 ssunieq 4873 sspwuni 5025 pwssb 5026 ordunisssuc 6353 sorpssuni 7563 uniordint 7628 sbthlem1 8823 ordunifi 8994 isfinite2 9002 cflim2 9950 fin23lem16 10022 fin23lem29 10028 fin1a2lem11 10097 fin1a2lem13 10099 itunitc 10108 zorng 10191 wuncval2 10434 suplem1pr 10739 suplem2pr 10740 mrcuni 17247 ipodrsfi 18172 mrelatlub 18195 subgint 18694 efgval 19238 toponmre 22152 neips 22172 neiuni 22181 alexsubALTlem2 23107 alexsubALTlem3 23108 tgpconncompeqg 23171 unidmvol 24610 tglnunirn 26813 uniinn0 30791 elrspunidl 31508 ssmxidllem 31543 locfinreflem 31692 zarclsiin 31723 zarclsint 31724 zarcmplem 31733 sxbrsigalem0 32138 dya2iocuni 32150 dya2iocucvr 32151 carsguni 32175 oldf 33968 topjoin 34481 fnejoin1 34484 fnejoin2 34485 ovoliunnfl 35746 voliunnfl 35748 volsupnfl 35749 intidl 36114 unichnidl 36116 mnuunid 41784 expanduniss 41800 salexct 43763 unilbss 46051 unilbeu 46159 ipolublem 46160 setrec1lem2 46280 setrec2fun 46284 |
Copyright terms: Public domain | W3C validator |