Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unissb | Structured version Visualization version GIF version |
Description: Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.) |
Ref | Expression |
---|---|
unissb | ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 4848 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝐴 ↔ ∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) | |
2 | 1 | imbi1i 350 | . . . . 5 ⊢ ((𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) |
3 | 19.23v 1949 | . . . . 5 ⊢ (∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) | |
4 | 2, 3 | bitr4i 277 | . . . 4 ⊢ ((𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ ∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) |
5 | 4 | albii 1826 | . . 3 ⊢ (∀𝑦(𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) |
6 | alcom 2160 | . . . 4 ⊢ (∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵)) | |
7 | 19.21v 1946 | . . . . . 6 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) | |
8 | impexp 451 | . . . . . . . 8 ⊢ (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵))) | |
9 | bi2.04 389 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵)) ↔ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) | |
10 | 8, 9 | bitri 274 | . . . . . . 7 ⊢ (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) |
11 | 10 | albii 1826 | . . . . . 6 ⊢ (∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) |
12 | dfss2 3912 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵)) | |
13 | 12 | imbi2i 336 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) |
14 | 7, 11, 13 | 3bitr4i 303 | . . . . 5 ⊢ (∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
15 | 14 | albii 1826 | . . . 4 ⊢ (∀𝑥∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
16 | 6, 15 | bitri 274 | . . 3 ⊢ (∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
17 | 5, 16 | bitri 274 | . 2 ⊢ (∀𝑦(𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) |
18 | dfss2 3912 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵)) | |
19 | df-ral 3071 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵)) | |
20 | 17, 18, 19 | 3bitr4i 303 | 1 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1540 ∃wex 1786 ∈ wcel 2110 ∀wral 3066 ⊆ wss 3892 ∪ cuni 4845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-v 3433 df-in 3899 df-ss 3909 df-uni 4846 |
This theorem is referenced by: uniss2 4880 ssunieq 4882 sspwuni 5034 pwssb 5035 ordunisssuc 6367 sorpssuni 7579 uniordint 7645 sbthlem1 8852 ordunifi 9042 isfinite2 9050 cflim2 10020 fin23lem16 10092 fin23lem29 10098 fin1a2lem11 10167 fin1a2lem13 10169 itunitc 10178 zorng 10261 wuncval2 10504 suplem1pr 10809 suplem2pr 10810 mrcuni 17328 ipodrsfi 18255 mrelatlub 18278 subgint 18777 efgval 19321 toponmre 22242 neips 22262 neiuni 22271 alexsubALTlem2 23197 alexsubALTlem3 23198 tgpconncompeqg 23261 unidmvol 24703 tglnunirn 26907 uniinn0 30886 elrspunidl 31602 ssmxidllem 31637 locfinreflem 31786 zarclsiin 31817 zarclsint 31818 zarcmplem 31827 sxbrsigalem0 32234 dya2iocuni 32246 dya2iocucvr 32247 carsguni 32271 oldf 34037 topjoin 34550 fnejoin1 34553 fnejoin2 34554 ovoliunnfl 35815 voliunnfl 35817 volsupnfl 35818 intidl 36183 unichnidl 36185 mnuunid 41865 expanduniss 41881 salexct 43844 unilbss 46132 unilbeu 46240 ipolublem 46241 setrec1lem2 46363 setrec2fun 46367 |
Copyright terms: Public domain | W3C validator |