![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cotrg | Structured version Visualization version GIF version |
Description: Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr 6142 for the main application. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6142. (Revised by Richard Penner, 24-Dec-2019.) (Proof shortened by SN, 19-Dec-2024.) Avoid ax-11 2158. (Revised by BTernaryTau, 29-Dec-2024.) |
Ref | Expression |
---|---|
cotrg | ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 6138 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
2 | ssrel3 5810 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧)) |
4 | vex 3492 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | vex 3492 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
6 | 4, 5 | brco 5895 | . . . . . . 7 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑧 ↔ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) |
7 | 6 | imbi1i 349 | . . . . . 6 ⊢ ((𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
8 | 19.23v 1941 | . . . . . 6 ⊢ (∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | |
9 | 7, 8 | bitr4i 278 | . . . . 5 ⊢ ((𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
10 | 9 | albii 1817 | . . . 4 ⊢ (∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑧∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
11 | breq2 5170 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (𝑦𝐴𝑧 ↔ 𝑦𝐴𝑤)) | |
12 | 11 | anbi2d 629 | . . . . . 6 ⊢ (𝑧 = 𝑤 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ↔ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑤))) |
13 | breq2 5170 | . . . . . 6 ⊢ (𝑧 = 𝑤 → (𝑥𝐶𝑧 ↔ 𝑥𝐶𝑤)) | |
14 | 12, 13 | imbi12d 344 | . . . . 5 ⊢ (𝑧 = 𝑤 → (((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑤) → 𝑥𝐶𝑤))) |
15 | breq2 5170 | . . . . . . 7 ⊢ (𝑦 = 𝑤 → (𝑥𝐵𝑦 ↔ 𝑥𝐵𝑤)) | |
16 | breq1 5169 | . . . . . . 7 ⊢ (𝑦 = 𝑤 → (𝑦𝐴𝑧 ↔ 𝑤𝐴𝑧)) | |
17 | 15, 16 | anbi12d 631 | . . . . . 6 ⊢ (𝑦 = 𝑤 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ↔ (𝑥𝐵𝑤 ∧ 𝑤𝐴𝑧))) |
18 | 17 | imbi1d 341 | . . . . 5 ⊢ (𝑦 = 𝑤 → (((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ((𝑥𝐵𝑤 ∧ 𝑤𝐴𝑧) → 𝑥𝐶𝑧))) |
19 | 14, 18 | alcomw 2044 | . . . 4 ⊢ (∀𝑧∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
20 | 10, 19 | bitri 275 | . . 3 ⊢ (∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
21 | 20 | albii 1817 | . 2 ⊢ (∀𝑥∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
22 | 3, 21 | bitri 275 | 1 ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∃wex 1777 ⊆ wss 3976 class class class wbr 5166 ∘ ccom 5704 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-co 5709 |
This theorem is referenced by: cotr 6142 dffun2 6583 dffun2OLD 6584 cotr2g 15025 |
Copyright terms: Public domain | W3C validator |