MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotrg Structured version   Visualization version   GIF version

Theorem cotrg 6107
Description: Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr 6110 for the main application. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6110. (Revised by Richard Penner, 24-Dec-2019.) (Proof shortened by SN, 19-Dec-2024.) Avoid ax-11 2147. (Revised by BTernaryTau, 29-Dec-2024.)
Assertion
Ref Expression
cotrg ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧

Proof of Theorem cotrg
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 relco 6106 . . 3 Rel (𝐴𝐵)
2 ssrel3 5782 . . 3 (Rel (𝐴𝐵) → ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑧(𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧)))
31, 2ax-mp 5 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑧(𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧))
4 vex 3473 . . . . . . . 8 𝑥 ∈ V
5 vex 3473 . . . . . . . 8 𝑧 ∈ V
64, 5brco 5867 . . . . . . 7 (𝑥(𝐴𝐵)𝑧 ↔ ∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧))
76imbi1i 349 . . . . . 6 ((𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
8 19.23v 1938 . . . . . 6 (∀𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
97, 8bitr4i 278 . . . . 5 ((𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧) ↔ ∀𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
109albii 1814 . . . 4 (∀𝑧(𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧) ↔ ∀𝑧𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
11 breq2 5146 . . . . . . 7 (𝑧 = 𝑤 → (𝑦𝐴𝑧𝑦𝐴𝑤))
1211anbi2d 628 . . . . . 6 (𝑧 = 𝑤 → ((𝑥𝐵𝑦𝑦𝐴𝑧) ↔ (𝑥𝐵𝑦𝑦𝐴𝑤)))
13 breq2 5146 . . . . . 6 (𝑧 = 𝑤 → (𝑥𝐶𝑧𝑥𝐶𝑤))
1412, 13imbi12d 344 . . . . 5 (𝑧 = 𝑤 → (((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ((𝑥𝐵𝑦𝑦𝐴𝑤) → 𝑥𝐶𝑤)))
15 breq2 5146 . . . . . . 7 (𝑦 = 𝑤 → (𝑥𝐵𝑦𝑥𝐵𝑤))
16 breq1 5145 . . . . . . 7 (𝑦 = 𝑤 → (𝑦𝐴𝑧𝑤𝐴𝑧))
1715, 16anbi12d 630 . . . . . 6 (𝑦 = 𝑤 → ((𝑥𝐵𝑦𝑦𝐴𝑧) ↔ (𝑥𝐵𝑤𝑤𝐴𝑧)))
1817imbi1d 341 . . . . 5 (𝑦 = 𝑤 → (((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ((𝑥𝐵𝑤𝑤𝐴𝑧) → 𝑥𝐶𝑧)))
1914, 18alcomw 2040 . . . 4 (∀𝑧𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
2010, 19bitri 275 . . 3 (∀𝑧(𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧) ↔ ∀𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
2120albii 1814 . 2 (∀𝑥𝑧(𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
223, 21bitri 275 1 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1532  wex 1774  wss 3944   class class class wbr 5142  ccom 5676  Rel wrel 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-co 5681
This theorem is referenced by:  cotr  6110  dffun2  6552  dffun2OLD  6553  cotr2g  14947
  Copyright terms: Public domain W3C validator