MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotrg Structured version   Visualization version   GIF version

Theorem cotrg 6016
Description: Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr 6017 for the main application. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6017. (Revised by Richard Penner, 24-Dec-2019.)
Assertion
Ref Expression
cotrg ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧

Proof of Theorem cotrg
StepHypRef Expression
1 df-co 5598 . . . 4 (𝐴𝐵) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧)}
21relopabiv 5730 . . 3 Rel (𝐴𝐵)
3 ssrel 5693 . . 3 (Rel (𝐴𝐵) → ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶)))
42, 3ax-mp 5 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶))
5 vex 3436 . . . . . . . 8 𝑥 ∈ V
6 vex 3436 . . . . . . . 8 𝑧 ∈ V
75, 6opelco 5780 . . . . . . 7 (⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧))
8 df-br 5075 . . . . . . . 8 (𝑥𝐶𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐶)
98bicomi 223 . . . . . . 7 (⟨𝑥, 𝑧⟩ ∈ 𝐶𝑥𝐶𝑧)
107, 9imbi12i 351 . . . . . 6 ((⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ (∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
11 19.23v 1945 . . . . . 6 (∀𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
1210, 11bitr4i 277 . . . . 5 ((⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ ∀𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
1312albii 1822 . . . 4 (∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ ∀𝑧𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
14 alcom 2156 . . . 4 (∀𝑧𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
1513, 14bitri 274 . . 3 (∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ ∀𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
1615albii 1822 . 2 (∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
174, 16bitri 274 1 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  wex 1782  wcel 2106  wss 3887  cop 4567   class class class wbr 5074  ccom 5593  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-co 5598
This theorem is referenced by:  cotr  6017  cotr2g  14687
  Copyright terms: Public domain W3C validator