MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotrg Structured version   Visualization version   GIF version

Theorem cotrg 5938
Description: Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr 5939 for the main application. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 5939. (Revised by Richard Penner, 24-Dec-2019.)
Assertion
Ref Expression
cotrg ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧

Proof of Theorem cotrg
StepHypRef Expression
1 df-co 5528 . . . 4 (𝐴𝐵) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧)}
21relopabi 5658 . . 3 Rel (𝐴𝐵)
3 ssrel 5621 . . 3 (Rel (𝐴𝐵) → ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶)))
42, 3ax-mp 5 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶))
5 vex 3444 . . . . . . . 8 𝑥 ∈ V
6 vex 3444 . . . . . . . 8 𝑧 ∈ V
75, 6opelco 5706 . . . . . . 7 (⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧))
8 df-br 5031 . . . . . . . 8 (𝑥𝐶𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐶)
98bicomi 227 . . . . . . 7 (⟨𝑥, 𝑧⟩ ∈ 𝐶𝑥𝐶𝑧)
107, 9imbi12i 354 . . . . . 6 ((⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ (∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
11 19.23v 1943 . . . . . 6 (∀𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
1210, 11bitr4i 281 . . . . 5 ((⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ ∀𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
1312albii 1821 . . . 4 (∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ ∀𝑧𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
14 alcom 2160 . . . 4 (∀𝑧𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
1513, 14bitri 278 . . 3 (∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ ∀𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
1615albii 1821 . 2 (∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
174, 16bitri 278 1 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536  wex 1781  wcel 2111  wss 3881  cop 4531   class class class wbr 5030  ccom 5523  Rel wrel 5524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-xp 5525  df-rel 5526  df-co 5528
This theorem is referenced by:  cotr  5939  cotr2g  14327
  Copyright terms: Public domain W3C validator