|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cotrg | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr 6130 for the main application. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6130. (Revised by Richard Penner, 24-Dec-2019.) (Proof shortened by SN, 19-Dec-2024.) Avoid ax-11 2157. (Revised by BTernaryTau, 29-Dec-2024.) | 
| Ref | Expression | 
|---|---|
| cotrg | ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relco 6126 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
| 2 | ssrel3 5796 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧)) | 
| 4 | vex 3484 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 5 | vex 3484 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 6 | 4, 5 | brco 5881 | . . . . . . 7 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑧 ↔ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) | 
| 7 | 6 | imbi1i 349 | . . . . . 6 ⊢ ((𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | 
| 8 | 19.23v 1942 | . . . . . 6 ⊢ (∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | |
| 9 | 7, 8 | bitr4i 278 | . . . . 5 ⊢ ((𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | 
| 10 | 9 | albii 1819 | . . . 4 ⊢ (∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑧∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | 
| 11 | breq2 5147 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (𝑦𝐴𝑧 ↔ 𝑦𝐴𝑤)) | |
| 12 | 11 | anbi2d 630 | . . . . . 6 ⊢ (𝑧 = 𝑤 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ↔ (𝑥𝐵𝑦 ∧ 𝑦𝐴𝑤))) | 
| 13 | breq2 5147 | . . . . . 6 ⊢ (𝑧 = 𝑤 → (𝑥𝐶𝑧 ↔ 𝑥𝐶𝑤)) | |
| 14 | 12, 13 | imbi12d 344 | . . . . 5 ⊢ (𝑧 = 𝑤 → (((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑤) → 𝑥𝐶𝑤))) | 
| 15 | breq2 5147 | . . . . . . 7 ⊢ (𝑦 = 𝑤 → (𝑥𝐵𝑦 ↔ 𝑥𝐵𝑤)) | |
| 16 | breq1 5146 | . . . . . . 7 ⊢ (𝑦 = 𝑤 → (𝑦𝐴𝑧 ↔ 𝑤𝐴𝑧)) | |
| 17 | 15, 16 | anbi12d 632 | . . . . . 6 ⊢ (𝑦 = 𝑤 → ((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) ↔ (𝑥𝐵𝑤 ∧ 𝑤𝐴𝑧))) | 
| 18 | 17 | imbi1d 341 | . . . . 5 ⊢ (𝑦 = 𝑤 → (((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ((𝑥𝐵𝑤 ∧ 𝑤𝐴𝑧) → 𝑥𝐶𝑧))) | 
| 19 | 14, 18 | alcomw 2044 | . . . 4 ⊢ (∀𝑧∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | 
| 20 | 10, 19 | bitri 275 | . . 3 ⊢ (∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | 
| 21 | 20 | albii 1819 | . 2 ⊢ (∀𝑥∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | 
| 22 | 3, 21 | bitri 275 | 1 ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ⊆ wss 3951 class class class wbr 5143 ∘ ccom 5689 Rel wrel 5690 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-co 5694 | 
| This theorem is referenced by: cotr 6130 dffun2 6571 dffun2OLD 6572 cotr2g 15015 | 
| Copyright terms: Public domain | W3C validator |