MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotrg Structured version   Visualization version   GIF version

Theorem cotrg 6139
Description: Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr 6142 for the main application. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6142. (Revised by Richard Penner, 24-Dec-2019.) (Proof shortened by SN, 19-Dec-2024.) Avoid ax-11 2158. (Revised by BTernaryTau, 29-Dec-2024.)
Assertion
Ref Expression
cotrg ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧

Proof of Theorem cotrg
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 relco 6138 . . 3 Rel (𝐴𝐵)
2 ssrel3 5810 . . 3 (Rel (𝐴𝐵) → ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑧(𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧)))
31, 2ax-mp 5 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑧(𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧))
4 vex 3492 . . . . . . . 8 𝑥 ∈ V
5 vex 3492 . . . . . . . 8 𝑧 ∈ V
64, 5brco 5895 . . . . . . 7 (𝑥(𝐴𝐵)𝑧 ↔ ∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧))
76imbi1i 349 . . . . . 6 ((𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
8 19.23v 1941 . . . . . 6 (∀𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
97, 8bitr4i 278 . . . . 5 ((𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧) ↔ ∀𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
109albii 1817 . . . 4 (∀𝑧(𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧) ↔ ∀𝑧𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
11 breq2 5170 . . . . . . 7 (𝑧 = 𝑤 → (𝑦𝐴𝑧𝑦𝐴𝑤))
1211anbi2d 629 . . . . . 6 (𝑧 = 𝑤 → ((𝑥𝐵𝑦𝑦𝐴𝑧) ↔ (𝑥𝐵𝑦𝑦𝐴𝑤)))
13 breq2 5170 . . . . . 6 (𝑧 = 𝑤 → (𝑥𝐶𝑧𝑥𝐶𝑤))
1412, 13imbi12d 344 . . . . 5 (𝑧 = 𝑤 → (((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ((𝑥𝐵𝑦𝑦𝐴𝑤) → 𝑥𝐶𝑤)))
15 breq2 5170 . . . . . . 7 (𝑦 = 𝑤 → (𝑥𝐵𝑦𝑥𝐵𝑤))
16 breq1 5169 . . . . . . 7 (𝑦 = 𝑤 → (𝑦𝐴𝑧𝑤𝐴𝑧))
1715, 16anbi12d 631 . . . . . 6 (𝑦 = 𝑤 → ((𝑥𝐵𝑦𝑦𝐴𝑧) ↔ (𝑥𝐵𝑤𝑤𝐴𝑧)))
1817imbi1d 341 . . . . 5 (𝑦 = 𝑤 → (((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ((𝑥𝐵𝑤𝑤𝐴𝑧) → 𝑥𝐶𝑧)))
1914, 18alcomw 2044 . . . 4 (∀𝑧𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
2010, 19bitri 275 . . 3 (∀𝑧(𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧) ↔ ∀𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
2120albii 1817 . 2 (∀𝑥𝑧(𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
223, 21bitri 275 1 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wex 1777  wss 3976   class class class wbr 5166  ccom 5704  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-co 5709
This theorem is referenced by:  cotr  6142  dffun2  6583  dffun2OLD  6584  cotr2g  15025
  Copyright terms: Public domain W3C validator