MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvsym Structured version   Visualization version   GIF version

Theorem cnvsym 6060
Description: Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by SN, 23-Dec-2024.) Avoid ax-11 2160. (Revised by BTernaryTau, 29-Dec-2024.)
Assertion
Ref Expression
cnvsym (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem cnvsym
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 relcnv 6052 . . 3 Rel 𝑅
2 ssrel3 5725 . . 3 (Rel 𝑅 → (𝑅𝑅 ↔ ∀𝑦𝑥(𝑦𝑅𝑥𝑦𝑅𝑥)))
31, 2ax-mp 5 . 2 (𝑅𝑅 ↔ ∀𝑦𝑥(𝑦𝑅𝑥𝑦𝑅𝑥))
4 breq1 5092 . . . 4 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
5 breq1 5092 . . . 4 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
64, 5imbi12d 344 . . 3 (𝑦 = 𝑧 → ((𝑦𝑅𝑥𝑦𝑅𝑥) ↔ (𝑧𝑅𝑥𝑧𝑅𝑥)))
7 breq2 5093 . . . 4 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
8 breq2 5093 . . . 4 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
97, 8imbi12d 344 . . 3 (𝑥 = 𝑧 → ((𝑦𝑅𝑥𝑦𝑅𝑥) ↔ (𝑦𝑅𝑧𝑦𝑅𝑧)))
106, 9alcomw 2046 . 2 (∀𝑦𝑥(𝑦𝑅𝑥𝑦𝑅𝑥) ↔ ∀𝑥𝑦(𝑦𝑅𝑥𝑦𝑅𝑥))
11 vex 3440 . . . . 5 𝑦 ∈ V
12 vex 3440 . . . . 5 𝑥 ∈ V
1311, 12brcnv 5821 . . . 4 (𝑦𝑅𝑥𝑥𝑅𝑦)
1413imbi1i 349 . . 3 ((𝑦𝑅𝑥𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
15142albii 1821 . 2 (∀𝑥𝑦(𝑦𝑅𝑥𝑦𝑅𝑥) ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
163, 10, 153bitri 297 1 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539  wss 3897   class class class wbr 5089  ccnv 5613  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622
This theorem is referenced by:  dfer2  8623  relcnveq3  38358  relcnveq  38359  relcnveq2  38360  cnvcosseq  38538  symrelcoss2  38567  dfsymrels3  38637  elrelscnveq3  38638  elrelscnveq  38639  elrelscnveq2  38640  dfsymrel3  38645  symrefref3  38659  refsymrels3  38661  elrefsymrels3  38665  dfeqvrels3  38684
  Copyright terms: Public domain W3C validator