MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvsym Structured version   Visualization version   GIF version

Theorem cnvsym 6074
Description: Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by SN, 23-Dec-2024.) Avoid ax-11 2158. (Revised by BTernaryTau, 29-Dec-2024.)
Assertion
Ref Expression
cnvsym (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem cnvsym
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 relcnv 6065 . . 3 Rel 𝑅
2 ssrel3 5741 . . 3 (Rel 𝑅 → (𝑅𝑅 ↔ ∀𝑦𝑥(𝑦𝑅𝑥𝑦𝑅𝑥)))
31, 2ax-mp 5 . 2 (𝑅𝑅 ↔ ∀𝑦𝑥(𝑦𝑅𝑥𝑦𝑅𝑥))
4 breq1 5105 . . . 4 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
5 breq1 5105 . . . 4 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
64, 5imbi12d 344 . . 3 (𝑦 = 𝑧 → ((𝑦𝑅𝑥𝑦𝑅𝑥) ↔ (𝑧𝑅𝑥𝑧𝑅𝑥)))
7 breq2 5106 . . . 4 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
8 breq2 5106 . . . 4 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
97, 8imbi12d 344 . . 3 (𝑥 = 𝑧 → ((𝑦𝑅𝑥𝑦𝑅𝑥) ↔ (𝑦𝑅𝑧𝑦𝑅𝑧)))
106, 9alcomw 2045 . 2 (∀𝑦𝑥(𝑦𝑅𝑥𝑦𝑅𝑥) ↔ ∀𝑥𝑦(𝑦𝑅𝑥𝑦𝑅𝑥))
11 vex 3448 . . . . 5 𝑦 ∈ V
12 vex 3448 . . . . 5 𝑥 ∈ V
1311, 12brcnv 5837 . . . 4 (𝑦𝑅𝑥𝑥𝑅𝑦)
1413imbi1i 349 . . 3 ((𝑦𝑅𝑥𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
15142albii 1820 . 2 (∀𝑥𝑦(𝑦𝑅𝑥𝑦𝑅𝑥) ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
163, 10, 153bitri 297 1 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wss 3911   class class class wbr 5102  ccnv 5630  Rel wrel 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639
This theorem is referenced by:  dfer2  8650  relcnveq3  38304  relcnveq  38305  relcnveq2  38306  cnvcosseq  38423  symrelcoss2  38452  elrelscnveq3  38477  elrelscnveq  38478  elrelscnveq2  38479  dfsymrels3  38532  dfsymrel3  38536  symrefref3  38550  refsymrels3  38552  elrefsymrels3  38556  dfeqvrels3  38575
  Copyright terms: Public domain W3C validator