![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvsym | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by SN, 23-Dec-2024.) Avoid ax-11 2146. (Revised by BTernaryTau, 29-Dec-2024.) |
Ref | Expression |
---|---|
cnvsym | ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6109 | . . 3 ⊢ Rel ◡𝑅 | |
2 | ssrel3 5788 | . . 3 ⊢ (Rel ◡𝑅 → (◡𝑅 ⊆ 𝑅 ↔ ∀𝑦∀𝑥(𝑦◡𝑅𝑥 → 𝑦𝑅𝑥))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑦∀𝑥(𝑦◡𝑅𝑥 → 𝑦𝑅𝑥)) |
4 | breq1 5152 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝑦◡𝑅𝑥 ↔ 𝑧◡𝑅𝑥)) | |
5 | breq1 5152 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝑦𝑅𝑥 ↔ 𝑧𝑅𝑥)) | |
6 | 4, 5 | imbi12d 343 | . . 3 ⊢ (𝑦 = 𝑧 → ((𝑦◡𝑅𝑥 → 𝑦𝑅𝑥) ↔ (𝑧◡𝑅𝑥 → 𝑧𝑅𝑥))) |
7 | breq2 5153 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑦◡𝑅𝑥 ↔ 𝑦◡𝑅𝑧)) | |
8 | breq2 5153 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝑧)) | |
9 | 7, 8 | imbi12d 343 | . . 3 ⊢ (𝑥 = 𝑧 → ((𝑦◡𝑅𝑥 → 𝑦𝑅𝑥) ↔ (𝑦◡𝑅𝑧 → 𝑦𝑅𝑧))) |
10 | 6, 9 | alcomw 2039 | . 2 ⊢ (∀𝑦∀𝑥(𝑦◡𝑅𝑥 → 𝑦𝑅𝑥) ↔ ∀𝑥∀𝑦(𝑦◡𝑅𝑥 → 𝑦𝑅𝑥)) |
11 | vex 3465 | . . . . 5 ⊢ 𝑦 ∈ V | |
12 | vex 3465 | . . . . 5 ⊢ 𝑥 ∈ V | |
13 | 11, 12 | brcnv 5885 | . . . 4 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
14 | 13 | imbi1i 348 | . . 3 ⊢ ((𝑦◡𝑅𝑥 → 𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
15 | 14 | 2albii 1814 | . 2 ⊢ (∀𝑥∀𝑦(𝑦◡𝑅𝑥 → 𝑦𝑅𝑥) ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
16 | 3, 10, 15 | 3bitri 296 | 1 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 ⊆ wss 3944 class class class wbr 5149 ◡ccnv 5677 Rel wrel 5683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-xp 5684 df-rel 5685 df-cnv 5686 |
This theorem is referenced by: dfer2 8726 relcnveq3 37923 relcnveq 37924 relcnveq2 37925 cnvcosseq 38039 symrelcoss2 38068 elrelscnveq3 38093 elrelscnveq 38094 elrelscnveq2 38095 dfsymrels3 38148 dfsymrel3 38152 symrefref3 38166 refsymrels3 38168 elrefsymrels3 38172 dfeqvrels3 38191 |
Copyright terms: Public domain | W3C validator |