MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvsym Structured version   Visualization version   GIF version

Theorem cnvsym 6101
Description: Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by SN, 23-Dec-2024.) Avoid ax-11 2157. (Revised by BTernaryTau, 29-Dec-2024.)
Assertion
Ref Expression
cnvsym (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem cnvsym
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 relcnv 6091 . . 3 Rel 𝑅
2 ssrel3 5765 . . 3 (Rel 𝑅 → (𝑅𝑅 ↔ ∀𝑦𝑥(𝑦𝑅𝑥𝑦𝑅𝑥)))
31, 2ax-mp 5 . 2 (𝑅𝑅 ↔ ∀𝑦𝑥(𝑦𝑅𝑥𝑦𝑅𝑥))
4 breq1 5122 . . . 4 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
5 breq1 5122 . . . 4 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
64, 5imbi12d 344 . . 3 (𝑦 = 𝑧 → ((𝑦𝑅𝑥𝑦𝑅𝑥) ↔ (𝑧𝑅𝑥𝑧𝑅𝑥)))
7 breq2 5123 . . . 4 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
8 breq2 5123 . . . 4 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
97, 8imbi12d 344 . . 3 (𝑥 = 𝑧 → ((𝑦𝑅𝑥𝑦𝑅𝑥) ↔ (𝑦𝑅𝑧𝑦𝑅𝑧)))
106, 9alcomw 2044 . 2 (∀𝑦𝑥(𝑦𝑅𝑥𝑦𝑅𝑥) ↔ ∀𝑥𝑦(𝑦𝑅𝑥𝑦𝑅𝑥))
11 vex 3463 . . . . 5 𝑦 ∈ V
12 vex 3463 . . . . 5 𝑥 ∈ V
1311, 12brcnv 5862 . . . 4 (𝑦𝑅𝑥𝑥𝑅𝑦)
1413imbi1i 349 . . 3 ((𝑦𝑅𝑥𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
15142albii 1820 . 2 (∀𝑥𝑦(𝑦𝑅𝑥𝑦𝑅𝑥) ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
163, 10, 153bitri 297 1 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wss 3926   class class class wbr 5119  ccnv 5653  Rel wrel 5659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662
This theorem is referenced by:  dfer2  8720  relcnveq3  38339  relcnveq  38340  relcnveq2  38341  cnvcosseq  38455  symrelcoss2  38484  elrelscnveq3  38509  elrelscnveq  38510  elrelscnveq2  38511  dfsymrels3  38564  dfsymrel3  38568  symrefref3  38582  refsymrels3  38584  elrefsymrels3  38588  dfeqvrels3  38607
  Copyright terms: Public domain W3C validator