MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvsym Structured version   Visualization version   GIF version

Theorem cnvsym 5695
Description: Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvsym (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem cnvsym
StepHypRef Expression
1 alcom 2201 . 2 (∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅) ↔ ∀𝑥𝑦(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅))
2 relcnv 5687 . . 3 Rel 𝑅
3 ssrel 5379 . . 3 (Rel 𝑅 → (𝑅𝑅 ↔ ∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅)))
42, 3ax-mp 5 . 2 (𝑅𝑅 ↔ ∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅))
5 vex 3353 . . . . . 6 𝑦 ∈ V
6 vex 3353 . . . . . 6 𝑥 ∈ V
75, 6brcnv 5475 . . . . 5 (𝑦𝑅𝑥𝑥𝑅𝑦)
8 df-br 4812 . . . . 5 (𝑦𝑅𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
97, 8bitr3i 268 . . . 4 (𝑥𝑅𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
10 df-br 4812 . . . 4 (𝑦𝑅𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
119, 10imbi12i 341 . . 3 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅))
12112albii 1915 . 2 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝑦(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅))
131, 4, 123bitr4i 294 1 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wal 1650  wcel 2155  wss 3734  cop 4342   class class class wbr 4811  ccnv 5278  Rel wrel 5284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pr 5064
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-rab 3064  df-v 3352  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-sn 4337  df-pr 4339  df-op 4343  df-br 4812  df-opab 4874  df-xp 5285  df-rel 5286  df-cnv 5287
This theorem is referenced by:  dfer2  7952  relcnveq3  34542  relcnveq  34543  relcnveq2  34544  cnvcosseq  34642  symrelcoss2  34666  elrelscnveq3  34691  elrelscnveq  34692  elrelscnveq2  34693  dfsymrels3  34742  dfsymrel3  34746  symrefref3  34760  refsymrels3  34762  elrefsymrels3  34766  dfeqvrels3  34783
  Copyright terms: Public domain W3C validator