MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvsym Structured version   Visualization version   GIF version

Theorem cnvsym 6144
Description: Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by SN, 23-Dec-2024.) Avoid ax-11 2158. (Revised by BTernaryTau, 29-Dec-2024.)
Assertion
Ref Expression
cnvsym (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem cnvsym
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 relcnv 6134 . . 3 Rel 𝑅
2 ssrel3 5810 . . 3 (Rel 𝑅 → (𝑅𝑅 ↔ ∀𝑦𝑥(𝑦𝑅𝑥𝑦𝑅𝑥)))
31, 2ax-mp 5 . 2 (𝑅𝑅 ↔ ∀𝑦𝑥(𝑦𝑅𝑥𝑦𝑅𝑥))
4 breq1 5169 . . . 4 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
5 breq1 5169 . . . 4 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
64, 5imbi12d 344 . . 3 (𝑦 = 𝑧 → ((𝑦𝑅𝑥𝑦𝑅𝑥) ↔ (𝑧𝑅𝑥𝑧𝑅𝑥)))
7 breq2 5170 . . . 4 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
8 breq2 5170 . . . 4 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
97, 8imbi12d 344 . . 3 (𝑥 = 𝑧 → ((𝑦𝑅𝑥𝑦𝑅𝑥) ↔ (𝑦𝑅𝑧𝑦𝑅𝑧)))
106, 9alcomw 2044 . 2 (∀𝑦𝑥(𝑦𝑅𝑥𝑦𝑅𝑥) ↔ ∀𝑥𝑦(𝑦𝑅𝑥𝑦𝑅𝑥))
11 vex 3492 . . . . 5 𝑦 ∈ V
12 vex 3492 . . . . 5 𝑥 ∈ V
1311, 12brcnv 5907 . . . 4 (𝑦𝑅𝑥𝑥𝑅𝑦)
1413imbi1i 349 . . 3 ((𝑦𝑅𝑥𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦𝑦𝑅𝑥))
15142albii 1818 . 2 (∀𝑥𝑦(𝑦𝑅𝑥𝑦𝑅𝑥) ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
163, 10, 153bitri 297 1 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wss 3976   class class class wbr 5166  ccnv 5699  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708
This theorem is referenced by:  dfer2  8764  relcnveq3  38277  relcnveq  38278  relcnveq2  38279  cnvcosseq  38393  symrelcoss2  38422  elrelscnveq3  38447  elrelscnveq  38448  elrelscnveq2  38449  dfsymrels3  38502  dfsymrel3  38506  symrefref3  38520  refsymrels3  38522  elrefsymrels3  38526  dfeqvrels3  38545
  Copyright terms: Public domain W3C validator