Mathbox for ML < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbasisrelowllem2 Structured version   Visualization version   GIF version

Theorem isbasisrelowllem2 35053
 Description: Lemma for isbasisrelowl 35055. (Contributed by ML, 27-Jul-2020.)
Hypothesis
Ref Expression
isbasisrelowl.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
isbasisrelowllem2 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼)
Distinct variable groups:   𝑧,𝑎   𝑧,𝑏   𝑐,𝑑,𝑥,𝑧   𝑦,𝑐,𝑑,𝑧
Allowed substitution hints:   𝐼(𝑥,𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem isbasisrelowllem2
StepHypRef Expression
1 simplr1 1212 . . . . 5 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → 𝑐 ∈ ℝ)
2 simplr2 1213 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → 𝑑 ∈ ℝ)
3 nfv 1915 . . . . . . . . . . . 12 𝑧 𝑎 ∈ ℝ
4 nfv 1915 . . . . . . . . . . . 12 𝑧 𝑏 ∈ ℝ
5 nfrab1 3302 . . . . . . . . . . . . 13 𝑧{𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}
65nfeq2 2936 . . . . . . . . . . . 12 𝑧 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}
73, 4, 6nf3an 1902 . . . . . . . . . . 11 𝑧(𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
8 nfv 1915 . . . . . . . . . . . 12 𝑧 𝑐 ∈ ℝ
9 nfv 1915 . . . . . . . . . . . 12 𝑧 𝑑 ∈ ℝ
10 nfrab1 3302 . . . . . . . . . . . . 13 𝑧{𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}
1110nfeq2 2936 . . . . . . . . . . . 12 𝑧 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}
128, 9, 11nf3an 1902 . . . . . . . . . . 11 𝑧(𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
137, 12nfan 1900 . . . . . . . . . 10 𝑧((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
14 nfv 1915 . . . . . . . . . 10 𝑧(𝑎𝑐𝑑𝑏)
1513, 14nfan 1900 . . . . . . . . 9 𝑧(((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏))
16 nfcv 2919 . . . . . . . . 9 𝑧(𝑥𝑦)
17 simp3 1135 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) → 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
18 simp3 1135 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
19 elin 3874 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝑥𝑦) ↔ (𝑧𝑥𝑧𝑦))
20 eleq2 2840 . . . . . . . . . . . . . . . . . . 19 (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} → (𝑧𝑥𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}))
21 rabid 3296 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} ↔ (𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)))
2220, 21bitrdi 290 . . . . . . . . . . . . . . . . . 18 (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} → (𝑧𝑥 ↔ (𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏))))
2322anbi1d 632 . . . . . . . . . . . . . . . . 17 (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} → ((𝑧𝑥𝑧𝑦) ↔ ((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ 𝑧𝑦)))
2419, 23syl5bb 286 . . . . . . . . . . . . . . . 16 (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} → (𝑧 ∈ (𝑥𝑦) ↔ ((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ 𝑧𝑦)))
25 eleq2 2840 . . . . . . . . . . . . . . . . . 18 (𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} → (𝑧𝑦𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
26 rabid 3296 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} ↔ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑)))
2725, 26bitrdi 290 . . . . . . . . . . . . . . . . 17 (𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} → (𝑧𝑦 ↔ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑))))
2827anbi2d 631 . . . . . . . . . . . . . . . 16 (𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} → (((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ 𝑧𝑦) ↔ ((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑)))))
2924, 28sylan9bb 513 . . . . . . . . . . . . . . 15 ((𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑧 ∈ (𝑥𝑦) ↔ ((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑)))))
30 an4 655 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑))) ↔ ((𝑧 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑))))
31 anidm 568 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ ∧ 𝑧 ∈ ℝ) ↔ 𝑧 ∈ ℝ)
3231anbi1i 626 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑))) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑))))
3330, 32bitri 278 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑))) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑))))
34 an4 655 . . . . . . . . . . . . . . . . . . 19 (((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)) ↔ ((𝑎𝑧𝑐𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏)))
35 an42 656 . . . . . . . . . . . . . . . . . . . 20 (((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑)) ↔ ((𝑎𝑧𝑐𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏)))
3635bicomi 227 . . . . . . . . . . . . . . . . . . 19 (((𝑎𝑧𝑐𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏)) ↔ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑)))
3734, 36bitri 278 . . . . . . . . . . . . . . . . . 18 (((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)) ↔ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑)))
3837bicomi 227 . . . . . . . . . . . . . . . . 17 (((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑)) ↔ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))
3938anbi2i 625 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑))) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))))
4033, 39bitri 278 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑))) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))))
4129, 40bitrdi 290 . . . . . . . . . . . . . 14 ((𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑧 ∈ (𝑥𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
4217, 18, 41syl2an 598 . . . . . . . . . . . . 13 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → (𝑧 ∈ (𝑥𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
4342adantr 484 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑧 ∈ (𝑥𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
44 simpl 486 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))) → 𝑧 ∈ ℝ)
45 simprrl 780 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))) → 𝑐𝑧)
46 simprlr 779 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))) → 𝑧 < 𝑑)
4744, 45, 46jca32 519 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))) → (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑)))
4843, 47syl6bi 256 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑧 ∈ (𝑥𝑦) → (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑))))
49 3simpa 1145 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ))
50 3simpa 1145 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ))
5149, 50anim12i 615 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)))
52 letr 10772 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑎𝑐𝑐𝑧) → 𝑎𝑧))
53523expia 1118 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑧 ∈ ℝ → ((𝑎𝑐𝑐𝑧) → 𝑎𝑧)))
5453exp4a 435 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑧 ∈ ℝ → (𝑎𝑐 → (𝑐𝑧𝑎𝑧))))
5554ad2ant2r 746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑧 ∈ ℝ → (𝑎𝑐 → (𝑐𝑧𝑎𝑧))))
56 ltletr 10770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑧 < 𝑑𝑑𝑏) → 𝑧 < 𝑏))
57563com13 1121 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 < 𝑑𝑑𝑏) → 𝑧 < 𝑏))
5857expcomd 420 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑑𝑏 → (𝑧 < 𝑑𝑧 < 𝑏)))
59583expia 1118 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑧 ∈ ℝ → (𝑑𝑏 → (𝑧 < 𝑑𝑧 < 𝑏))))
6059ad2ant2l 745 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑧 ∈ ℝ → (𝑑𝑏 → (𝑧 < 𝑑𝑧 < 𝑏))))
6155, 60jcad 516 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑧 ∈ ℝ → ((𝑎𝑐 → (𝑐𝑧𝑎𝑧)) ∧ (𝑑𝑏 → (𝑧 < 𝑑𝑧 < 𝑏)))))
62 anim12 808 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎𝑐 → (𝑐𝑧𝑎𝑧)) ∧ (𝑑𝑏 → (𝑧 < 𝑑𝑧 < 𝑏))) → ((𝑎𝑐𝑑𝑏) → ((𝑐𝑧𝑎𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏))))
6361, 62syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑧 ∈ ℝ → ((𝑎𝑐𝑑𝑏) → ((𝑐𝑧𝑎𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏)))))
6463com23 86 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ((𝑎𝑐𝑑𝑏) → (𝑧 ∈ ℝ → ((𝑐𝑧𝑎𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏)))))
65 anim12 808 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑐𝑧𝑎𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏)) → ((𝑐𝑧𝑧 < 𝑑) → (𝑎𝑧𝑧 < 𝑏)))
6664, 65syl8 76 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ((𝑎𝑐𝑑𝑏) → (𝑧 ∈ ℝ → ((𝑐𝑧𝑧 < 𝑑) → (𝑎𝑧𝑧 < 𝑏)))))
6766imp31 421 . . . . . . . . . . . . . . . . . . . 20 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐𝑧𝑧 < 𝑑) → (𝑎𝑧𝑧 < 𝑏)))
6867ancrd 555 . . . . . . . . . . . . . . . . . . 19 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐𝑧𝑧 < 𝑑) → ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑))))
69 an42 656 . . . . . . . . . . . . . . . . . . . 20 (((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)) ↔ ((𝑎𝑧𝑐𝑧) ∧ (𝑧 < 𝑏𝑧 < 𝑑)))
70 an4 655 . . . . . . . . . . . . . . . . . . . 20 (((𝑎𝑧𝑐𝑧) ∧ (𝑧 < 𝑏𝑧 < 𝑑)) ↔ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑)))
7169, 70bitri 278 . . . . . . . . . . . . . . . . . . 19 (((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)) ↔ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑)))
7268, 71syl6ibr 255 . . . . . . . . . . . . . . . . . 18 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐𝑧𝑧 < 𝑑) → ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))))
73 simpr 488 . . . . . . . . . . . . . . . . . 18 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
7472, 73jctild 529 . . . . . . . . . . . . . . . . 17 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐𝑧𝑧 < 𝑑) → (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
7551, 74sylanl1 679 . . . . . . . . . . . . . . . 16 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐𝑧𝑧 < 𝑑) → (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
7675imp 410 . . . . . . . . . . . . . . 15 ((((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) ∧ (𝑐𝑧𝑧 < 𝑑)) → (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))))
7776an32s 651 . . . . . . . . . . . . . 14 ((((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) ∧ (𝑐𝑧𝑧 < 𝑑)) ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))))
7843adantr 484 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) ∧ (𝑐𝑧𝑧 < 𝑑)) → (𝑧 ∈ (𝑥𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
7978adantr 484 . . . . . . . . . . . . . 14 ((((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) ∧ (𝑐𝑧𝑧 < 𝑑)) ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ (𝑥𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
8077, 79mpbird 260 . . . . . . . . . . . . 13 ((((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) ∧ (𝑐𝑧𝑧 < 𝑑)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ (𝑥𝑦))
8180expl 461 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (((𝑐𝑧𝑧 < 𝑑) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ (𝑥𝑦)))
8281ancomsd 469 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → ((𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑)) → 𝑧 ∈ (𝑥𝑦)))
8348, 82impbid 215 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑧 ∈ (𝑥𝑦) ↔ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑))))
8483, 26bitr4di 292 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑧 ∈ (𝑥𝑦) ↔ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
8515, 16, 10, 84eqrd 3911 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
862, 85jca 515 . . . . . . 7 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑑 ∈ ℝ ∧ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
878619.8ad 2179 . . . . . 6 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → ∃𝑑(𝑑 ∈ ℝ ∧ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
88 df-rex 3076 . . . . . 6 (∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} ↔ ∃𝑑(𝑑 ∈ ℝ ∧ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
8987, 88sylibr 237 . . . . 5 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
901, 89jca 515 . . . 4 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑐 ∈ ℝ ∧ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
919019.8ad 2179 . . 3 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → ∃𝑐(𝑐 ∈ ℝ ∧ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
92 df-rex 3076 . . 3 (∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} ↔ ∃𝑐(𝑐 ∈ ℝ ∧ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
9391, 92sylibr 237 . 2 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → ∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
94 isbasisrelowl.1 . . 3 𝐼 = ([,) “ (ℝ × ℝ))
9594icoreelrnab 35051 . 2 ((𝑥𝑦) ∈ 𝐼 ↔ ∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
9693, 95sylibr 237 1 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ∃wex 1781   ∈ wcel 2111  ∃wrex 3071  {crab 3074   ∩ cin 3857   class class class wbr 5032   × cxp 5522   “ cima 5527  ℝcr 10574   < clt 10713   ≤ cle 10714  [,)cico 12781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-pre-lttri 10649  ax-pre-lttrn 10650 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-po 5443  df-so 5444  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-ico 12785 This theorem is referenced by:  icoreclin  35054
 Copyright terms: Public domain W3C validator