Proof of Theorem isbasisrelowllem2
| Step | Hyp | Ref
| Expression |
| 1 | | simplr1 1216 |
. . . . 5
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) → 𝑐 ∈ ℝ) |
| 2 | | simplr2 1217 |
. . . . . . . 8
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) → 𝑑 ∈ ℝ) |
| 3 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧 𝑎 ∈ ℝ |
| 4 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧 𝑏 ∈ ℝ |
| 5 | | nfrab1 3457 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧{𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)} |
| 6 | 5 | nfeq2 2923 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)} |
| 7 | 3, 4, 6 | nf3an 1901 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧(𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) |
| 8 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧 𝑐 ∈ ℝ |
| 9 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧 𝑑 ∈ ℝ |
| 10 | | nfrab1 3457 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧{𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)} |
| 11 | 10 | nfeq2 2923 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)} |
| 12 | 8, 9, 11 | nf3an 1901 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧(𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) |
| 13 | 7, 12 | nfan 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑧((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) |
| 14 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑧(𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏) |
| 15 | 13, 14 | nfan 1899 |
. . . . . . . . 9
⊢
Ⅎ𝑧(((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) |
| 16 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑧(𝑥 ∩ 𝑦) |
| 17 | | simp3 1139 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) → 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) |
| 18 | | simp3 1139 |
. . . . . . . . . . . . . 14
⊢ ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) → 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) |
| 19 | | elin 3967 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ (𝑥 ∩ 𝑦) ↔ (𝑧 ∈ 𝑥 ∧ 𝑧 ∈ 𝑦)) |
| 20 | | eleq2 2830 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)} → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)})) |
| 21 | | rabid 3458 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)} ↔ (𝑧 ∈ ℝ ∧ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏))) |
| 22 | 20, 21 | bitrdi 287 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)} → (𝑧 ∈ 𝑥 ↔ (𝑧 ∈ ℝ ∧ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)))) |
| 23 | 22 | anbi1d 631 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)} → ((𝑧 ∈ 𝑥 ∧ 𝑧 ∈ 𝑦) ↔ ((𝑧 ∈ ℝ ∧ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)) ∧ 𝑧 ∈ 𝑦))) |
| 24 | 19, 23 | bitrid 283 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)} → (𝑧 ∈ (𝑥 ∩ 𝑦) ↔ ((𝑧 ∈ ℝ ∧ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)) ∧ 𝑧 ∈ 𝑦))) |
| 25 | | eleq2 2830 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)} → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) |
| 26 | | rabid 3458 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)} ↔ (𝑧 ∈ ℝ ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑))) |
| 27 | 25, 26 | bitrdi 287 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)} → (𝑧 ∈ 𝑦 ↔ (𝑧 ∈ ℝ ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)))) |
| 28 | 27 | anbi2d 630 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)} → (((𝑧 ∈ ℝ ∧ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)) ∧ 𝑧 ∈ 𝑦) ↔ ((𝑧 ∈ ℝ ∧ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑))))) |
| 29 | 24, 28 | sylan9bb 509 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)} ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) → (𝑧 ∈ (𝑥 ∩ 𝑦) ↔ ((𝑧 ∈ ℝ ∧ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑))))) |
| 30 | | an4 656 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑧 ∈ ℝ ∧ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑))) ↔ ((𝑧 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)))) |
| 31 | | anidm 564 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℝ ∧ 𝑧 ∈ ℝ) ↔ 𝑧 ∈
ℝ) |
| 32 | 31 | anbi1i 624 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑧 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑))) ↔ (𝑧 ∈ ℝ ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)))) |
| 33 | 30, 32 | bitri 275 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑧 ∈ ℝ ∧ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑))) ↔ (𝑧 ∈ ℝ ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)))) |
| 34 | | an4 656 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏)) ↔ ((𝑎 ≤ 𝑧 ∧ 𝑐 ≤ 𝑧) ∧ (𝑧 < 𝑑 ∧ 𝑧 < 𝑏))) |
| 35 | | an42 657 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)) ↔ ((𝑎 ≤ 𝑧 ∧ 𝑐 ≤ 𝑧) ∧ (𝑧 < 𝑑 ∧ 𝑧 < 𝑏))) |
| 36 | 35 | bicomi 224 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑎 ≤ 𝑧 ∧ 𝑐 ≤ 𝑧) ∧ (𝑧 < 𝑑 ∧ 𝑧 < 𝑏)) ↔ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑))) |
| 37 | 34, 36 | bitri 275 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏)) ↔ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑))) |
| 38 | 37 | bicomi 224 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)) ↔ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏))) |
| 39 | 38 | anbi2i 623 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℝ ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑))) ↔ (𝑧 ∈ ℝ ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏)))) |
| 40 | 33, 39 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 ∈ ℝ ∧ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑))) ↔ (𝑧 ∈ ℝ ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏)))) |
| 41 | 29, 40 | bitrdi 287 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)} ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) → (𝑧 ∈ (𝑥 ∩ 𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏))))) |
| 42 | 17, 18, 41 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) → (𝑧 ∈ (𝑥 ∩ 𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏))))) |
| 43 | 42 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) → (𝑧 ∈ (𝑥 ∩ 𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏))))) |
| 44 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℝ ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏))) → 𝑧 ∈ ℝ) |
| 45 | | simprrl 781 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℝ ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏))) → 𝑐 ≤ 𝑧) |
| 46 | | simprlr 780 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℝ ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏))) → 𝑧 < 𝑑) |
| 47 | 44, 45, 46 | jca32 515 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏))) → (𝑧 ∈ ℝ ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑))) |
| 48 | 43, 47 | biimtrdi 253 |
. . . . . . . . . . 11
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) → (𝑧 ∈ (𝑥 ∩ 𝑦) → (𝑧 ∈ ℝ ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)))) |
| 49 | | 3simpa 1149 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) |
| 50 | | 3simpa 1149 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) → (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) |
| 51 | 49, 50 | anim12i 613 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) → ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ))) |
| 52 | | letr 11355 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑎 ≤ 𝑐 ∧ 𝑐 ≤ 𝑧) → 𝑎 ≤ 𝑧)) |
| 53 | 52 | 3expia 1122 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑧 ∈ ℝ → ((𝑎 ≤ 𝑐 ∧ 𝑐 ≤ 𝑧) → 𝑎 ≤ 𝑧))) |
| 54 | 53 | exp4a 431 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑧 ∈ ℝ → (𝑎 ≤ 𝑐 → (𝑐 ≤ 𝑧 → 𝑎 ≤ 𝑧)))) |
| 55 | 54 | ad2ant2r 747 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑧 ∈ ℝ → (𝑎 ≤ 𝑐 → (𝑐 ≤ 𝑧 → 𝑎 ≤ 𝑧)))) |
| 56 | | ltletr 11353 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑧 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑧 < 𝑑 ∧ 𝑑 ≤ 𝑏) → 𝑧 < 𝑏)) |
| 57 | 56 | 3com13 1125 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 < 𝑑 ∧ 𝑑 ≤ 𝑏) → 𝑧 < 𝑏)) |
| 58 | 57 | expcomd 416 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑑 ≤ 𝑏 → (𝑧 < 𝑑 → 𝑧 < 𝑏))) |
| 59 | 58 | 3expia 1122 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑧 ∈ ℝ → (𝑑 ≤ 𝑏 → (𝑧 < 𝑑 → 𝑧 < 𝑏)))) |
| 60 | 59 | ad2ant2l 746 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑧 ∈ ℝ → (𝑑 ≤ 𝑏 → (𝑧 < 𝑑 → 𝑧 < 𝑏)))) |
| 61 | 55, 60 | jcad 512 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑧 ∈ ℝ → ((𝑎 ≤ 𝑐 → (𝑐 ≤ 𝑧 → 𝑎 ≤ 𝑧)) ∧ (𝑑 ≤ 𝑏 → (𝑧 < 𝑑 → 𝑧 < 𝑏))))) |
| 62 | | anim12 809 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑎 ≤ 𝑐 → (𝑐 ≤ 𝑧 → 𝑎 ≤ 𝑧)) ∧ (𝑑 ≤ 𝑏 → (𝑧 < 𝑑 → 𝑧 < 𝑏))) → ((𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏) → ((𝑐 ≤ 𝑧 → 𝑎 ≤ 𝑧) ∧ (𝑧 < 𝑑 → 𝑧 < 𝑏)))) |
| 63 | 61, 62 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑧 ∈ ℝ → ((𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏) → ((𝑐 ≤ 𝑧 → 𝑎 ≤ 𝑧) ∧ (𝑧 < 𝑑 → 𝑧 < 𝑏))))) |
| 64 | 63 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ((𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏) → (𝑧 ∈ ℝ → ((𝑐 ≤ 𝑧 → 𝑎 ≤ 𝑧) ∧ (𝑧 < 𝑑 → 𝑧 < 𝑏))))) |
| 65 | | anim12 809 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑐 ≤ 𝑧 → 𝑎 ≤ 𝑧) ∧ (𝑧 < 𝑑 → 𝑧 < 𝑏)) → ((𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑) → (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏))) |
| 66 | 64, 65 | syl8 76 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ((𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏) → (𝑧 ∈ ℝ → ((𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑) → (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏))))) |
| 67 | 66 | imp31 417 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑎 ∈
ℝ ∧ 𝑏 ∈
ℝ) ∧ (𝑐 ∈
ℝ ∧ 𝑑 ∈
ℝ)) ∧ (𝑎 ≤
𝑐 ∧ 𝑑 ≤ 𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑) → (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏))) |
| 68 | 67 | ancrd 551 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑎 ∈
ℝ ∧ 𝑏 ∈
ℝ) ∧ (𝑐 ∈
ℝ ∧ 𝑑 ∈
ℝ)) ∧ (𝑎 ≤
𝑐 ∧ 𝑑 ≤ 𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑) → ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)))) |
| 69 | | an42 657 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏)) ↔ ((𝑎 ≤ 𝑧 ∧ 𝑐 ≤ 𝑧) ∧ (𝑧 < 𝑏 ∧ 𝑧 < 𝑑))) |
| 70 | | an4 656 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑎 ≤ 𝑧 ∧ 𝑐 ≤ 𝑧) ∧ (𝑧 < 𝑏 ∧ 𝑧 < 𝑑)) ↔ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑))) |
| 71 | 69, 70 | bitri 275 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏)) ↔ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑))) |
| 72 | 68, 71 | imbitrrdi 252 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑎 ∈
ℝ ∧ 𝑏 ∈
ℝ) ∧ (𝑐 ∈
ℝ ∧ 𝑑 ∈
ℝ)) ∧ (𝑎 ≤
𝑐 ∧ 𝑑 ≤ 𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑) → ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏)))) |
| 73 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑎 ∈
ℝ ∧ 𝑏 ∈
ℝ) ∧ (𝑐 ∈
ℝ ∧ 𝑑 ∈
ℝ)) ∧ (𝑎 ≤
𝑐 ∧ 𝑑 ≤ 𝑏)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ) |
| 74 | 72, 73 | jctild 525 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑎 ∈
ℝ ∧ 𝑏 ∈
ℝ) ∧ (𝑐 ∈
ℝ ∧ 𝑑 ∈
ℝ)) ∧ (𝑎 ≤
𝑐 ∧ 𝑑 ≤ 𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑) → (𝑧 ∈ ℝ ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏))))) |
| 75 | 51, 74 | sylanl1 680 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑎 ∈
ℝ ∧ 𝑏 ∈
ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑) → (𝑧 ∈ ℝ ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏))))) |
| 76 | 75 | imp 406 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑎 ∈
ℝ ∧ 𝑏 ∈
ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) ∧ 𝑧 ∈ ℝ) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)) → (𝑧 ∈ ℝ ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏)))) |
| 77 | 76 | an32s 652 |
. . . . . . . . . . . . . 14
⊢
((((((𝑎 ∈
ℝ ∧ 𝑏 ∈
ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)) ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ ℝ ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏)))) |
| 78 | 43 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑎 ∈
ℝ ∧ 𝑏 ∈
ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)) → (𝑧 ∈ (𝑥 ∩ 𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏))))) |
| 79 | 78 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
((((((𝑎 ∈
ℝ ∧ 𝑏 ∈
ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)) ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ (𝑥 ∩ 𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏))))) |
| 80 | 77, 79 | mpbird 257 |
. . . . . . . . . . . . 13
⊢
((((((𝑎 ∈
ℝ ∧ 𝑏 ∈
ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ (𝑥 ∩ 𝑦)) |
| 81 | 80 | expl 457 |
. . . . . . . . . . . 12
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) → (((𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ (𝑥 ∩ 𝑦))) |
| 82 | 81 | ancomsd 465 |
. . . . . . . . . . 11
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) → ((𝑧 ∈ ℝ ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)) → 𝑧 ∈ (𝑥 ∩ 𝑦))) |
| 83 | 48, 82 | impbid 212 |
. . . . . . . . . 10
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) → (𝑧 ∈ (𝑥 ∩ 𝑦) ↔ (𝑧 ∈ ℝ ∧ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)))) |
| 84 | 83, 26 | bitr4di 289 |
. . . . . . . . 9
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) → (𝑧 ∈ (𝑥 ∩ 𝑦) ↔ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) |
| 85 | 15, 16, 10, 84 | eqrd 4003 |
. . . . . . . 8
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) → (𝑥 ∩ 𝑦) = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) |
| 86 | 2, 85 | jca 511 |
. . . . . . 7
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) → (𝑑 ∈ ℝ ∧ (𝑥 ∩ 𝑦) = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) |
| 87 | 86 | 19.8ad 2182 |
. . . . . 6
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) → ∃𝑑(𝑑 ∈ ℝ ∧ (𝑥 ∩ 𝑦) = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) |
| 88 | | df-rex 3071 |
. . . . . 6
⊢
(∃𝑑 ∈
ℝ (𝑥 ∩ 𝑦) = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)} ↔ ∃𝑑(𝑑 ∈ ℝ ∧ (𝑥 ∩ 𝑦) = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) |
| 89 | 87, 88 | sylibr 234 |
. . . . 5
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) → ∃𝑑 ∈ ℝ (𝑥 ∩ 𝑦) = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) |
| 90 | 1, 89 | jca 511 |
. . . 4
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) → (𝑐 ∈ ℝ ∧ ∃𝑑 ∈ ℝ (𝑥 ∩ 𝑦) = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) |
| 91 | 90 | 19.8ad 2182 |
. . 3
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) → ∃𝑐(𝑐 ∈ ℝ ∧ ∃𝑑 ∈ ℝ (𝑥 ∩ 𝑦) = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) |
| 92 | | df-rex 3071 |
. . 3
⊢
(∃𝑐 ∈
ℝ ∃𝑑 ∈
ℝ (𝑥 ∩ 𝑦) = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)} ↔ ∃𝑐(𝑐 ∈ ℝ ∧ ∃𝑑 ∈ ℝ (𝑥 ∩ 𝑦) = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) |
| 93 | 91, 92 | sylibr 234 |
. 2
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) → ∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ (𝑥 ∩ 𝑦) = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) |
| 94 | | isbasisrelowl.1 |
. . 3
⊢ 𝐼 = ([,) “ (ℝ ×
ℝ)) |
| 95 | 94 | icoreelrnab 37355 |
. 2
⊢ ((𝑥 ∩ 𝑦) ∈ 𝐼 ↔ ∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ (𝑥 ∩ 𝑦) = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) |
| 96 | 93, 95 | sylibr 234 |
1
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) → (𝑥 ∩ 𝑦) ∈ 𝐼) |