Step | Hyp | Ref
| Expression |
1 | | supmo.1 |
. . 3
⊢ (𝜑 → 𝑅 Or 𝐴) |
2 | | ancom 460 |
. . . . . . . 8
⊢
((∀𝑦 ∈
𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦) ↔ (∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦)) |
3 | 2 | anbi2ci 624 |
. . . . . . 7
⊢
(((∀𝑦 ∈
𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦) ∧ (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ↔ ((∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) ∧ (∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦))) |
4 | | an42 653 |
. . . . . . 7
⊢
(((∀𝑦 ∈
𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) ∧ (∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ↔ ((∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦) ∧ (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))) |
5 | | an42 653 |
. . . . . . 7
⊢
(((∀𝑦 ∈
𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦) ∧ (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦)) ↔ ((∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) ∧ (∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦))) |
6 | 3, 4, 5 | 3bitr4i 302 |
. . . . . 6
⊢
(((∀𝑦 ∈
𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) ∧ (∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ↔ ((∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦) ∧ (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦))) |
7 | | ralnex 3163 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐵 ¬ 𝑥𝑅𝑦 ↔ ¬ ∃𝑦 ∈ 𝐵 𝑥𝑅𝑦) |
8 | | breq1 5073 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (𝑦𝑅𝑤 ↔ 𝑥𝑅𝑤)) |
9 | | breq1 5073 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → (𝑦𝑅𝑧 ↔ 𝑥𝑅𝑧)) |
10 | 9 | rexbidv 3225 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (∃𝑧 ∈ 𝐵 𝑦𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 𝑥𝑅𝑧)) |
11 | 8, 10 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → ((𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ↔ (𝑥𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑥𝑅𝑧))) |
12 | 11 | rspcva 3550 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → (𝑥𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑥𝑅𝑧)) |
13 | | breq2 5074 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → (𝑥𝑅𝑦 ↔ 𝑥𝑅𝑧)) |
14 | 13 | cbvrexvw 3373 |
. . . . . . . . . . . 12
⊢
(∃𝑦 ∈
𝐵 𝑥𝑅𝑦 ↔ ∃𝑧 ∈ 𝐵 𝑥𝑅𝑧) |
15 | 12, 14 | syl6ibr 251 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → (𝑥𝑅𝑤 → ∃𝑦 ∈ 𝐵 𝑥𝑅𝑦)) |
16 | 15 | con3d 152 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → (¬ ∃𝑦 ∈ 𝐵 𝑥𝑅𝑦 → ¬ 𝑥𝑅𝑤)) |
17 | 7, 16 | syl5bi 241 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 → ¬ 𝑥𝑅𝑤)) |
18 | 17 | expimpd 453 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → ((∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦) → ¬ 𝑥𝑅𝑤)) |
19 | 18 | ad2antrl 724 |
. . . . . . 7
⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦) → ¬ 𝑥𝑅𝑤)) |
20 | | ralnex 3163 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐵 ¬ 𝑤𝑅𝑦 ↔ ¬ ∃𝑦 ∈ 𝐵 𝑤𝑅𝑦) |
21 | | breq1 5073 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑤 → (𝑦𝑅𝑥 ↔ 𝑤𝑅𝑥)) |
22 | | breq1 5073 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑤 → (𝑦𝑅𝑧 ↔ 𝑤𝑅𝑧)) |
23 | 22 | rexbidv 3225 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑤 → (∃𝑧 ∈ 𝐵 𝑦𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)) |
24 | 21, 23 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → ((𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ↔ (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧))) |
25 | 24 | rspcva 3550 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → (𝑤𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧)) |
26 | | breq2 5074 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → (𝑤𝑅𝑦 ↔ 𝑤𝑅𝑧)) |
27 | 26 | cbvrexvw 3373 |
. . . . . . . . . . . 12
⊢
(∃𝑦 ∈
𝐵 𝑤𝑅𝑦 ↔ ∃𝑧 ∈ 𝐵 𝑤𝑅𝑧) |
28 | 25, 27 | syl6ibr 251 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → (𝑤𝑅𝑥 → ∃𝑦 ∈ 𝐵 𝑤𝑅𝑦)) |
29 | 28 | con3d 152 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → (¬ ∃𝑦 ∈ 𝐵 𝑤𝑅𝑦 → ¬ 𝑤𝑅𝑥)) |
30 | 20, 29 | syl5bi 241 |
. . . . . . . . 9
⊢ ((𝑤 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → (∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦 → ¬ 𝑤𝑅𝑥)) |
31 | 30 | expimpd 453 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝐴 → ((∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦) → ¬ 𝑤𝑅𝑥)) |
32 | 31 | ad2antll 725 |
. . . . . . 7
⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦) → ¬ 𝑤𝑅𝑥)) |
33 | 19, 32 | anim12d 608 |
. . . . . 6
⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (((∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦) ∧ (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦)) → (¬ 𝑥𝑅𝑤 ∧ ¬ 𝑤𝑅𝑥))) |
34 | 6, 33 | syl5bi 241 |
. . . . 5
⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (((∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) ∧ (∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) → (¬ 𝑥𝑅𝑤 ∧ ¬ 𝑤𝑅𝑥))) |
35 | | sotrieq2 5524 |
. . . . 5
⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑥 = 𝑤 ↔ (¬ 𝑥𝑅𝑤 ∧ ¬ 𝑤𝑅𝑥))) |
36 | 34, 35 | sylibrd 258 |
. . . 4
⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (((∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) ∧ (∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) → 𝑥 = 𝑤)) |
37 | 36 | ralrimivva 3114 |
. . 3
⊢ (𝑅 Or 𝐴 → ∀𝑥 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (((∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) ∧ (∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) → 𝑥 = 𝑤)) |
38 | 1, 37 | syl 17 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (((∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) ∧ (∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) → 𝑥 = 𝑤)) |
39 | | breq1 5073 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (𝑥𝑅𝑦 ↔ 𝑤𝑅𝑦)) |
40 | 39 | notbid 317 |
. . . . 5
⊢ (𝑥 = 𝑤 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑤𝑅𝑦)) |
41 | 40 | ralbidv 3120 |
. . . 4
⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦)) |
42 | | breq2 5074 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝑤)) |
43 | 42 | imbi1d 341 |
. . . . 5
⊢ (𝑥 = 𝑤 → ((𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ↔ (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
44 | 43 | ralbidv 3120 |
. . . 4
⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
45 | 41, 44 | anbi12d 630 |
. . 3
⊢ (𝑥 = 𝑤 → ((∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) ↔ (∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))) |
46 | 45 | rmo4 3660 |
. 2
⊢
(∃*𝑥 ∈
𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (((∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) ∧ (∀𝑦 ∈ 𝐵 ¬ 𝑤𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑤 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) → 𝑥 = 𝑤)) |
47 | 38, 46 | sylibr 233 |
1
⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |