MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiso2 Structured version   Visualization version   GIF version

Theorem dfiso2 16871
Description: Alternate definition of an isomorphism of a category, according to definition 3.8 in [Adamek] p. 28. (Contributed by AV, 10-Apr-2020.)
Hypotheses
Ref Expression
dfiso2.b 𝐵 = (Base‘𝐶)
dfiso2.h 𝐻 = (Hom ‘𝐶)
dfiso2.c (𝜑𝐶 ∈ Cat)
dfiso2.i 𝐼 = (Iso‘𝐶)
dfiso2.x (𝜑𝑋𝐵)
dfiso2.y (𝜑𝑌𝐵)
dfiso2.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
dfiso2.1 1 = (Id‘𝐶)
dfiso2.o = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)
dfiso2.p = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
Assertion
Ref Expression
dfiso2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
Distinct variable groups:   𝐶,𝑔   𝑔,𝐹   𝑔,𝐻   𝑔,𝐼   𝑔,𝑋   𝑔,𝑌   ,𝑔   ,𝑔   1 ,𝑔   𝜑,𝑔
Allowed substitution hint:   𝐵(𝑔)

Proof of Theorem dfiso2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dfiso2.b . . . 4 𝐵 = (Base‘𝐶)
2 eqid 2795 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
3 dfiso2.c . . . 4 (𝜑𝐶 ∈ Cat)
4 dfiso2.x . . . 4 (𝜑𝑋𝐵)
5 dfiso2.y . . . 4 (𝜑𝑌𝐵)
6 dfiso2.i . . . 4 𝐼 = (Iso‘𝐶)
71, 2, 3, 4, 5, 6isoval 16864 . . 3 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌))
87eleq2d 2868 . 2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
9 eqid 2795 . . . . 5 (Sect‘𝐶) = (Sect‘𝐶)
101, 2, 3, 4, 5, 9invfval 16858 . . . 4 (𝜑 → (𝑋(Inv‘𝐶)𝑌) = ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)))
1110dmeqd 5660 . . 3 (𝜑 → dom (𝑋(Inv‘𝐶)𝑌) = dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)))
1211eleq2d 2868 . 2 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹 ∈ dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋))))
13 dfiso2.h . . . . . . . . 9 𝐻 = (Hom ‘𝐶)
14 eqid 2795 . . . . . . . . 9 (comp‘𝐶) = (comp‘𝐶)
15 dfiso2.1 . . . . . . . . 9 1 = (Id‘𝐶)
161, 13, 14, 15, 9, 3, 4, 5sectfval 16850 . . . . . . . 8 (𝜑 → (𝑋(Sect‘𝐶)𝑌) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋))})
171, 13, 14, 15, 9, 3, 5, 4sectfval 16850 . . . . . . . . . 10 (𝜑 → (𝑌(Sect‘𝐶)𝑋) = {⟨𝑔, 𝑓⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))})
1817cnveqd 5632 . . . . . . . . 9 (𝜑(𝑌(Sect‘𝐶)𝑋) = {⟨𝑔, 𝑓⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))})
19 cnvopab 5873 . . . . . . . . 9 {⟨𝑔, 𝑓⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))}
2018, 19syl6eq 2847 . . . . . . . 8 (𝜑(𝑌(Sect‘𝐶)𝑋) = {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))})
2116, 20ineq12d 4110 . . . . . . 7 (𝜑 → ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) = ({⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋))} ∩ {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))}))
22 inopab 5587 . . . . . . . 8 ({⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋))} ∩ {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))}) = {⟨𝑓, 𝑔⟩ ∣ (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋)) ∧ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}
23 an4 652 . . . . . . . . . 10 ((((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋)) ∧ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌))) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))))
24 an42 653 . . . . . . . . . . . 12 (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌))) ↔ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))))
25 anidm 565 . . . . . . . . . . . 12 (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)))
2624, 25bitri 276 . . . . . . . . . . 11 (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌))) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)))
2726anbi1i 623 . . . . . . . . . 10 ((((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌))) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))))
2823, 27bitri 276 . . . . . . . . 9 ((((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋)) ∧ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))))
2928opabbii 5029 . . . . . . . 8 {⟨𝑓, 𝑔⟩ ∣ (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋)) ∧ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}
3022, 29eqtri 2819 . . . . . . 7 ({⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋))} ∩ {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))}) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}
3121, 30syl6eq 2847 . . . . . 6 (𝜑 → ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))})
3231dmeqd 5660 . . . . 5 (𝜑 → dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) = dom {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))})
33 dmopab 5670 . . . . 5 dom {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))} = {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}
3432, 33syl6eq 2847 . . . 4 (𝜑 → dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) = {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))})
3534eleq2d 2868 . . 3 (𝜑 → (𝐹 ∈ dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) ↔ 𝐹 ∈ {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}))
36 dfiso2.f . . . 4 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
37 eleq1 2870 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓 ∈ (𝑋𝐻𝑌) ↔ 𝐹 ∈ (𝑋𝐻𝑌)))
3837anbi1d 629 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))))
39 oveq2 7024 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹))
4039eqeq1d 2797 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ↔ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋)))
41 oveq1 7023 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔))
4241eqeq1d 2797 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌) ↔ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))
4340, 42anbi12d 630 . . . . . . 7 (𝑓 = 𝐹 → (((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)) ↔ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))))
4438, 43anbi12d 630 . . . . . 6 (𝑓 = 𝐹 → (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))))
4544exbidv 1899 . . . . 5 (𝑓 = 𝐹 → (∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))))
4645elabg 3604 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → (𝐹 ∈ {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))} ↔ ∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))))
4736, 46syl 17 . . 3 (𝜑 → (𝐹 ∈ {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))} ↔ ∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))))
4836biantrurd 533 . . . . . . 7 (𝜑 → (𝑔 ∈ (𝑌𝐻𝑋) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))))
4948bicomd 224 . . . . . 6 (𝜑 → ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ↔ 𝑔 ∈ (𝑌𝐻𝑋)))
50 dfiso2.o . . . . . . . . . . 11 = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)
5150a1i 11 . . . . . . . . . 10 (𝜑 = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋))
5251eqcomd 2801 . . . . . . . . 9 (𝜑 → (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋) = )
5352oveqd 7033 . . . . . . . 8 (𝜑 → (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = (𝑔 𝐹))
5453eqeq1d 2797 . . . . . . 7 (𝜑 → ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ↔ (𝑔 𝐹) = ( 1𝑋)))
55 dfiso2.p . . . . . . . . . . 11 = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
5655a1i 11 . . . . . . . . . 10 (𝜑 = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌))
5756eqcomd 2801 . . . . . . . . 9 (𝜑 → (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌) = )
5857oveqd 7033 . . . . . . . 8 (𝜑 → (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹 𝑔))
5958eqeq1d 2797 . . . . . . 7 (𝜑 → ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌) ↔ (𝐹 𝑔) = ( 1𝑌)))
6054, 59anbi12d 630 . . . . . 6 (𝜑 → (((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)) ↔ ((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
6149, 60anbi12d 630 . . . . 5 (𝜑 → (((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌)))))
6261exbidv 1899 . . . 4 (𝜑 → (∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ∃𝑔(𝑔 ∈ (𝑌𝐻𝑋) ∧ ((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌)))))
63 df-rex 3111 . . . 4 (∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌)) ↔ ∃𝑔(𝑔 ∈ (𝑌𝐻𝑋) ∧ ((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
6462, 63syl6bbr 290 . . 3 (𝜑 → (∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
6535, 47, 643bitrd 306 . 2 (𝜑 → (𝐹 ∈ dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
668, 12, 653bitrd 306 1 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wex 1761  wcel 2081  {cab 2775  wrex 3106  cin 3858  cop 4478  {copab 5024  ccnv 5442  dom cdm 5443  cfv 6225  (class class class)co 7016  Basecbs 16312  Hom chom 16405  compcco 16406  Catccat 16764  Idccid 16765  Sectcsect 16843  Invcinv 16844  Isociso 16845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-1st 7545  df-2nd 7546  df-sect 16846  df-inv 16847  df-iso 16848
This theorem is referenced by:  dfiso3  16872
  Copyright terms: Public domain W3C validator