MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiso2 Structured version   Visualization version   GIF version

Theorem dfiso2 17741
Description: Alternate definition of an isomorphism of a category, according to definition 3.8 in [Adamek] p. 28. (Contributed by AV, 10-Apr-2020.)
Hypotheses
Ref Expression
dfiso2.b 𝐵 = (Base‘𝐶)
dfiso2.h 𝐻 = (Hom ‘𝐶)
dfiso2.c (𝜑𝐶 ∈ Cat)
dfiso2.i 𝐼 = (Iso‘𝐶)
dfiso2.x (𝜑𝑋𝐵)
dfiso2.y (𝜑𝑌𝐵)
dfiso2.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
dfiso2.1 1 = (Id‘𝐶)
dfiso2.o = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)
dfiso2.p = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
Assertion
Ref Expression
dfiso2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
Distinct variable groups:   𝐶,𝑔   𝑔,𝐹   𝑔,𝐻   𝑔,𝐼   𝑔,𝑋   𝑔,𝑌   ,𝑔   ,𝑔   1 ,𝑔   𝜑,𝑔
Allowed substitution hint:   𝐵(𝑔)

Proof of Theorem dfiso2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dfiso2.b . . . 4 𝐵 = (Base‘𝐶)
2 eqid 2730 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
3 dfiso2.c . . . 4 (𝜑𝐶 ∈ Cat)
4 dfiso2.x . . . 4 (𝜑𝑋𝐵)
5 dfiso2.y . . . 4 (𝜑𝑌𝐵)
6 dfiso2.i . . . 4 𝐼 = (Iso‘𝐶)
71, 2, 3, 4, 5, 6isoval 17734 . . 3 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌))
87eleq2d 2815 . 2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
9 eqid 2730 . . . . 5 (Sect‘𝐶) = (Sect‘𝐶)
101, 2, 3, 4, 5, 9invfval 17728 . . . 4 (𝜑 → (𝑋(Inv‘𝐶)𝑌) = ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)))
1110dmeqd 5872 . . 3 (𝜑 → dom (𝑋(Inv‘𝐶)𝑌) = dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)))
1211eleq2d 2815 . 2 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹 ∈ dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋))))
13 dfiso2.h . . . . . . . . 9 𝐻 = (Hom ‘𝐶)
14 eqid 2730 . . . . . . . . 9 (comp‘𝐶) = (comp‘𝐶)
15 dfiso2.1 . . . . . . . . 9 1 = (Id‘𝐶)
161, 13, 14, 15, 9, 3, 4, 5sectfval 17720 . . . . . . . 8 (𝜑 → (𝑋(Sect‘𝐶)𝑌) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋))})
171, 13, 14, 15, 9, 3, 5, 4sectfval 17720 . . . . . . . . . 10 (𝜑 → (𝑌(Sect‘𝐶)𝑋) = {⟨𝑔, 𝑓⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))})
1817cnveqd 5842 . . . . . . . . 9 (𝜑(𝑌(Sect‘𝐶)𝑋) = {⟨𝑔, 𝑓⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))})
19 cnvopab 6113 . . . . . . . . 9 {⟨𝑔, 𝑓⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))}
2018, 19eqtrdi 2781 . . . . . . . 8 (𝜑(𝑌(Sect‘𝐶)𝑋) = {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))})
2116, 20ineq12d 4187 . . . . . . 7 (𝜑 → ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) = ({⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋))} ∩ {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))}))
22 inopab 5795 . . . . . . . 8 ({⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋))} ∩ {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))}) = {⟨𝑓, 𝑔⟩ ∣ (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋)) ∧ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}
23 an4 656 . . . . . . . . . 10 ((((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋)) ∧ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌))) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))))
24 an42 657 . . . . . . . . . . . 12 (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌))) ↔ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))))
25 anidm 564 . . . . . . . . . . . 12 (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)))
2624, 25bitri 275 . . . . . . . . . . 11 (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌))) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)))
2726anbi1i 624 . . . . . . . . . 10 ((((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌))) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))))
2823, 27bitri 275 . . . . . . . . 9 ((((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋)) ∧ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))))
2928opabbii 5177 . . . . . . . 8 {⟨𝑓, 𝑔⟩ ∣ (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋)) ∧ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}
3022, 29eqtri 2753 . . . . . . 7 ({⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋))} ∩ {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))}) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}
3121, 30eqtrdi 2781 . . . . . 6 (𝜑 → ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))})
3231dmeqd 5872 . . . . 5 (𝜑 → dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) = dom {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))})
33 dmopab 5882 . . . . 5 dom {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))} = {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}
3432, 33eqtrdi 2781 . . . 4 (𝜑 → dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) = {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))})
3534eleq2d 2815 . . 3 (𝜑 → (𝐹 ∈ dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) ↔ 𝐹 ∈ {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}))
36 dfiso2.f . . . 4 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
37 eleq1 2817 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓 ∈ (𝑋𝐻𝑌) ↔ 𝐹 ∈ (𝑋𝐻𝑌)))
3837anbi1d 631 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))))
39 oveq2 7398 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹))
4039eqeq1d 2732 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ↔ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋)))
41 oveq1 7397 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔))
4241eqeq1d 2732 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌) ↔ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))
4340, 42anbi12d 632 . . . . . . 7 (𝑓 = 𝐹 → (((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)) ↔ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))))
4438, 43anbi12d 632 . . . . . 6 (𝑓 = 𝐹 → (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))))
4544exbidv 1921 . . . . 5 (𝑓 = 𝐹 → (∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))))
4645elabg 3646 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → (𝐹 ∈ {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))} ↔ ∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))))
4736, 46syl 17 . . 3 (𝜑 → (𝐹 ∈ {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))} ↔ ∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))))
4836biantrurd 532 . . . . . . 7 (𝜑 → (𝑔 ∈ (𝑌𝐻𝑋) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))))
4948bicomd 223 . . . . . 6 (𝜑 → ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ↔ 𝑔 ∈ (𝑌𝐻𝑋)))
50 dfiso2.o . . . . . . . . . . 11 = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)
5150a1i 11 . . . . . . . . . 10 (𝜑 = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋))
5251eqcomd 2736 . . . . . . . . 9 (𝜑 → (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋) = )
5352oveqd 7407 . . . . . . . 8 (𝜑 → (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = (𝑔 𝐹))
5453eqeq1d 2732 . . . . . . 7 (𝜑 → ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ↔ (𝑔 𝐹) = ( 1𝑋)))
55 dfiso2.p . . . . . . . . . . 11 = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
5655a1i 11 . . . . . . . . . 10 (𝜑 = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌))
5756eqcomd 2736 . . . . . . . . 9 (𝜑 → (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌) = )
5857oveqd 7407 . . . . . . . 8 (𝜑 → (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹 𝑔))
5958eqeq1d 2732 . . . . . . 7 (𝜑 → ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌) ↔ (𝐹 𝑔) = ( 1𝑌)))
6054, 59anbi12d 632 . . . . . 6 (𝜑 → (((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)) ↔ ((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
6149, 60anbi12d 632 . . . . 5 (𝜑 → (((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌)))))
6261exbidv 1921 . . . 4 (𝜑 → (∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ∃𝑔(𝑔 ∈ (𝑌𝐻𝑋) ∧ ((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌)))))
63 df-rex 3055 . . . 4 (∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌)) ↔ ∃𝑔(𝑔 ∈ (𝑌𝐻𝑋) ∧ ((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
6462, 63bitr4di 289 . . 3 (𝜑 → (∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
6535, 47, 643bitrd 305 . 2 (𝜑 → (𝐹 ∈ dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
668, 12, 653bitrd 305 1 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wrex 3054  cin 3916  cop 4598  {copab 5172  ccnv 5640  dom cdm 5641  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632  Idccid 17633  Sectcsect 17713  Invcinv 17714  Isociso 17715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-sect 17716  df-inv 17717  df-iso 17718
This theorem is referenced by:  dfiso3  17742  isisod  49020
  Copyright terms: Public domain W3C validator