MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiso2 Structured version   Visualization version   GIF version

Theorem dfiso2 17277
Description: Alternate definition of an isomorphism of a category, according to definition 3.8 in [Adamek] p. 28. (Contributed by AV, 10-Apr-2020.)
Hypotheses
Ref Expression
dfiso2.b 𝐵 = (Base‘𝐶)
dfiso2.h 𝐻 = (Hom ‘𝐶)
dfiso2.c (𝜑𝐶 ∈ Cat)
dfiso2.i 𝐼 = (Iso‘𝐶)
dfiso2.x (𝜑𝑋𝐵)
dfiso2.y (𝜑𝑌𝐵)
dfiso2.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
dfiso2.1 1 = (Id‘𝐶)
dfiso2.o = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)
dfiso2.p = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
Assertion
Ref Expression
dfiso2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
Distinct variable groups:   𝐶,𝑔   𝑔,𝐹   𝑔,𝐻   𝑔,𝐼   𝑔,𝑋   𝑔,𝑌   ,𝑔   ,𝑔   1 ,𝑔   𝜑,𝑔
Allowed substitution hint:   𝐵(𝑔)

Proof of Theorem dfiso2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dfiso2.b . . . 4 𝐵 = (Base‘𝐶)
2 eqid 2737 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
3 dfiso2.c . . . 4 (𝜑𝐶 ∈ Cat)
4 dfiso2.x . . . 4 (𝜑𝑋𝐵)
5 dfiso2.y . . . 4 (𝜑𝑌𝐵)
6 dfiso2.i . . . 4 𝐼 = (Iso‘𝐶)
71, 2, 3, 4, 5, 6isoval 17270 . . 3 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌))
87eleq2d 2823 . 2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
9 eqid 2737 . . . . 5 (Sect‘𝐶) = (Sect‘𝐶)
101, 2, 3, 4, 5, 9invfval 17264 . . . 4 (𝜑 → (𝑋(Inv‘𝐶)𝑌) = ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)))
1110dmeqd 5774 . . 3 (𝜑 → dom (𝑋(Inv‘𝐶)𝑌) = dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)))
1211eleq2d 2823 . 2 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹 ∈ dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋))))
13 dfiso2.h . . . . . . . . 9 𝐻 = (Hom ‘𝐶)
14 eqid 2737 . . . . . . . . 9 (comp‘𝐶) = (comp‘𝐶)
15 dfiso2.1 . . . . . . . . 9 1 = (Id‘𝐶)
161, 13, 14, 15, 9, 3, 4, 5sectfval 17256 . . . . . . . 8 (𝜑 → (𝑋(Sect‘𝐶)𝑌) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋))})
171, 13, 14, 15, 9, 3, 5, 4sectfval 17256 . . . . . . . . . 10 (𝜑 → (𝑌(Sect‘𝐶)𝑋) = {⟨𝑔, 𝑓⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))})
1817cnveqd 5744 . . . . . . . . 9 (𝜑(𝑌(Sect‘𝐶)𝑋) = {⟨𝑔, 𝑓⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))})
19 cnvopab 6002 . . . . . . . . 9 {⟨𝑔, 𝑓⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))}
2018, 19eqtrdi 2794 . . . . . . . 8 (𝜑(𝑌(Sect‘𝐶)𝑋) = {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))})
2116, 20ineq12d 4128 . . . . . . 7 (𝜑 → ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) = ({⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋))} ∩ {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))}))
22 inopab 5699 . . . . . . . 8 ({⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋))} ∩ {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))}) = {⟨𝑓, 𝑔⟩ ∣ (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋)) ∧ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}
23 an4 656 . . . . . . . . . 10 ((((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋)) ∧ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌))) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))))
24 an42 657 . . . . . . . . . . . 12 (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌))) ↔ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))))
25 anidm 568 . . . . . . . . . . . 12 (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)))
2624, 25bitri 278 . . . . . . . . . . 11 (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌))) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)))
2726anbi1i 627 . . . . . . . . . 10 ((((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌))) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))))
2823, 27bitri 278 . . . . . . . . 9 ((((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋)) ∧ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))))
2928opabbii 5120 . . . . . . . 8 {⟨𝑓, 𝑔⟩ ∣ (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋)) ∧ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}
3022, 29eqtri 2765 . . . . . . 7 ({⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋))} ∩ {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))}) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}
3121, 30eqtrdi 2794 . . . . . 6 (𝜑 → ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))})
3231dmeqd 5774 . . . . 5 (𝜑 → dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) = dom {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))})
33 dmopab 5784 . . . . 5 dom {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))} = {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}
3432, 33eqtrdi 2794 . . . 4 (𝜑 → dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) = {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))})
3534eleq2d 2823 . . 3 (𝜑 → (𝐹 ∈ dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) ↔ 𝐹 ∈ {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}))
36 dfiso2.f . . . 4 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
37 eleq1 2825 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓 ∈ (𝑋𝐻𝑌) ↔ 𝐹 ∈ (𝑋𝐻𝑌)))
3837anbi1d 633 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))))
39 oveq2 7221 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹))
4039eqeq1d 2739 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ↔ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋)))
41 oveq1 7220 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔))
4241eqeq1d 2739 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌) ↔ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))
4340, 42anbi12d 634 . . . . . . 7 (𝑓 = 𝐹 → (((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)) ↔ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))))
4438, 43anbi12d 634 . . . . . 6 (𝑓 = 𝐹 → (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))))
4544exbidv 1929 . . . . 5 (𝑓 = 𝐹 → (∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))))
4645elabg 3585 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → (𝐹 ∈ {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))} ↔ ∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))))
4736, 46syl 17 . . 3 (𝜑 → (𝐹 ∈ {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))} ↔ ∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))))
4836biantrurd 536 . . . . . . 7 (𝜑 → (𝑔 ∈ (𝑌𝐻𝑋) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))))
4948bicomd 226 . . . . . 6 (𝜑 → ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ↔ 𝑔 ∈ (𝑌𝐻𝑋)))
50 dfiso2.o . . . . . . . . . . 11 = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)
5150a1i 11 . . . . . . . . . 10 (𝜑 = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋))
5251eqcomd 2743 . . . . . . . . 9 (𝜑 → (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋) = )
5352oveqd 7230 . . . . . . . 8 (𝜑 → (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = (𝑔 𝐹))
5453eqeq1d 2739 . . . . . . 7 (𝜑 → ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ↔ (𝑔 𝐹) = ( 1𝑋)))
55 dfiso2.p . . . . . . . . . . 11 = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
5655a1i 11 . . . . . . . . . 10 (𝜑 = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌))
5756eqcomd 2743 . . . . . . . . 9 (𝜑 → (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌) = )
5857oveqd 7230 . . . . . . . 8 (𝜑 → (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹 𝑔))
5958eqeq1d 2739 . . . . . . 7 (𝜑 → ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌) ↔ (𝐹 𝑔) = ( 1𝑌)))
6054, 59anbi12d 634 . . . . . 6 (𝜑 → (((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)) ↔ ((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
6149, 60anbi12d 634 . . . . 5 (𝜑 → (((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌)))))
6261exbidv 1929 . . . 4 (𝜑 → (∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ∃𝑔(𝑔 ∈ (𝑌𝐻𝑋) ∧ ((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌)))))
63 df-rex 3067 . . . 4 (∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌)) ↔ ∃𝑔(𝑔 ∈ (𝑌𝐻𝑋) ∧ ((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
6462, 63bitr4di 292 . . 3 (𝜑 → (∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
6535, 47, 643bitrd 308 . 2 (𝜑 → (𝐹 ∈ dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
668, 12, 653bitrd 308 1 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2110  {cab 2714  wrex 3062  cin 3865  cop 4547  {copab 5115  ccnv 5550  dom cdm 5551  cfv 6380  (class class class)co 7213  Basecbs 16760  Hom chom 16813  compcco 16814  Catccat 17167  Idccid 17168  Sectcsect 17249  Invcinv 17250  Isociso 17251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-sect 17252  df-inv 17253  df-iso 17254
This theorem is referenced by:  dfiso3  17278
  Copyright terms: Public domain W3C validator