MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiso2 Structured version   Visualization version   GIF version

Theorem dfiso2 17758
Description: Alternate definition of an isomorphism of a category, according to definition 3.8 in [Adamek] p. 28. (Contributed by AV, 10-Apr-2020.)
Hypotheses
Ref Expression
dfiso2.b 𝐵 = (Base‘𝐶)
dfiso2.h 𝐻 = (Hom ‘𝐶)
dfiso2.c (𝜑𝐶 ∈ Cat)
dfiso2.i 𝐼 = (Iso‘𝐶)
dfiso2.x (𝜑𝑋𝐵)
dfiso2.y (𝜑𝑌𝐵)
dfiso2.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
dfiso2.1 1 = (Id‘𝐶)
dfiso2.o = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)
dfiso2.p = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
Assertion
Ref Expression
dfiso2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
Distinct variable groups:   𝐶,𝑔   𝑔,𝐹   𝑔,𝐻   𝑔,𝐼   𝑔,𝑋   𝑔,𝑌   ,𝑔   ,𝑔   1 ,𝑔   𝜑,𝑔
Allowed substitution hint:   𝐵(𝑔)

Proof of Theorem dfiso2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dfiso2.b . . . 4 𝐵 = (Base‘𝐶)
2 eqid 2725 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
3 dfiso2.c . . . 4 (𝜑𝐶 ∈ Cat)
4 dfiso2.x . . . 4 (𝜑𝑋𝐵)
5 dfiso2.y . . . 4 (𝜑𝑌𝐵)
6 dfiso2.i . . . 4 𝐼 = (Iso‘𝐶)
71, 2, 3, 4, 5, 6isoval 17751 . . 3 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌))
87eleq2d 2811 . 2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
9 eqid 2725 . . . . 5 (Sect‘𝐶) = (Sect‘𝐶)
101, 2, 3, 4, 5, 9invfval 17745 . . . 4 (𝜑 → (𝑋(Inv‘𝐶)𝑌) = ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)))
1110dmeqd 5908 . . 3 (𝜑 → dom (𝑋(Inv‘𝐶)𝑌) = dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)))
1211eleq2d 2811 . 2 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹 ∈ dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋))))
13 dfiso2.h . . . . . . . . 9 𝐻 = (Hom ‘𝐶)
14 eqid 2725 . . . . . . . . 9 (comp‘𝐶) = (comp‘𝐶)
15 dfiso2.1 . . . . . . . . 9 1 = (Id‘𝐶)
161, 13, 14, 15, 9, 3, 4, 5sectfval 17737 . . . . . . . 8 (𝜑 → (𝑋(Sect‘𝐶)𝑌) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋))})
171, 13, 14, 15, 9, 3, 5, 4sectfval 17737 . . . . . . . . . 10 (𝜑 → (𝑌(Sect‘𝐶)𝑋) = {⟨𝑔, 𝑓⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))})
1817cnveqd 5878 . . . . . . . . 9 (𝜑(𝑌(Sect‘𝐶)𝑋) = {⟨𝑔, 𝑓⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))})
19 cnvopab 6144 . . . . . . . . 9 {⟨𝑔, 𝑓⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))}
2018, 19eqtrdi 2781 . . . . . . . 8 (𝜑(𝑌(Sect‘𝐶)𝑋) = {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))})
2116, 20ineq12d 4211 . . . . . . 7 (𝜑 → ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) = ({⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋))} ∩ {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))}))
22 inopab 5831 . . . . . . . 8 ({⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋))} ∩ {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))}) = {⟨𝑓, 𝑔⟩ ∣ (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋)) ∧ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}
23 an4 654 . . . . . . . . . 10 ((((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋)) ∧ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌))) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))))
24 an42 655 . . . . . . . . . . . 12 (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌))) ↔ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))))
25 anidm 563 . . . . . . . . . . . 12 (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)))
2624, 25bitri 274 . . . . . . . . . . 11 (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌))) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)))
2726anbi1i 622 . . . . . . . . . 10 ((((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌))) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))))
2823, 27bitri 274 . . . . . . . . 9 ((((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋)) ∧ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))))
2928opabbii 5216 . . . . . . . 8 {⟨𝑓, 𝑔⟩ ∣ (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋)) ∧ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}
3022, 29eqtri 2753 . . . . . . 7 ({⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋))} ∩ {⟨𝑓, 𝑔⟩ ∣ ((𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝑓 ∈ (𝑋𝐻𝑌)) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))}) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}
3121, 30eqtrdi 2781 . . . . . 6 (𝜑 → ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))})
3231dmeqd 5908 . . . . 5 (𝜑 → dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) = dom {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))})
33 dmopab 5918 . . . . 5 dom {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))} = {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}
3432, 33eqtrdi 2781 . . . 4 (𝜑 → dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) = {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))})
3534eleq2d 2811 . . 3 (𝜑 → (𝐹 ∈ dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) ↔ 𝐹 ∈ {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))}))
36 dfiso2.f . . . 4 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
37 eleq1 2813 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓 ∈ (𝑋𝐻𝑌) ↔ 𝐹 ∈ (𝑋𝐻𝑌)))
3837anbi1d 629 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))))
39 oveq2 7427 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹))
4039eqeq1d 2727 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ↔ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋)))
41 oveq1 7426 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔))
4241eqeq1d 2727 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌) ↔ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))
4340, 42anbi12d 630 . . . . . . 7 (𝑓 = 𝐹 → (((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)) ↔ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))))
4438, 43anbi12d 630 . . . . . 6 (𝑓 = 𝐹 → (((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))))
4544exbidv 1916 . . . . 5 (𝑓 = 𝐹 → (∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))))
4645elabg 3662 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → (𝐹 ∈ {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))} ↔ ∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))))
4736, 46syl 17 . . 3 (𝜑 → (𝐹 ∈ {𝑓 ∣ ∃𝑔((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑓) = ( 1𝑋) ∧ (𝑓(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))} ↔ ∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)))))
4836biantrurd 531 . . . . . . 7 (𝜑 → (𝑔 ∈ (𝑌𝐻𝑋) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))))
4948bicomd 222 . . . . . 6 (𝜑 → ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ↔ 𝑔 ∈ (𝑌𝐻𝑋)))
50 dfiso2.o . . . . . . . . . . 11 = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)
5150a1i 11 . . . . . . . . . 10 (𝜑 = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋))
5251eqcomd 2731 . . . . . . . . 9 (𝜑 → (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋) = )
5352oveqd 7436 . . . . . . . 8 (𝜑 → (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = (𝑔 𝐹))
5453eqeq1d 2727 . . . . . . 7 (𝜑 → ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ↔ (𝑔 𝐹) = ( 1𝑋)))
55 dfiso2.p . . . . . . . . . . 11 = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
5655a1i 11 . . . . . . . . . 10 (𝜑 = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌))
5756eqcomd 2731 . . . . . . . . 9 (𝜑 → (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌) = )
5857oveqd 7436 . . . . . . . 8 (𝜑 → (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹 𝑔))
5958eqeq1d 2727 . . . . . . 7 (𝜑 → ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌) ↔ (𝐹 𝑔) = ( 1𝑌)))
6054, 59anbi12d 630 . . . . . 6 (𝜑 → (((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌)) ↔ ((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
6149, 60anbi12d 630 . . . . 5 (𝜑 → (((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌)))))
6261exbidv 1916 . . . 4 (𝜑 → (∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ∃𝑔(𝑔 ∈ (𝑌𝐻𝑋) ∧ ((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌)))))
63 df-rex 3060 . . . 4 (∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌)) ↔ ∃𝑔(𝑔 ∈ (𝑌𝐻𝑋) ∧ ((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
6462, 63bitr4di 288 . . 3 (𝜑 → (∃𝑔((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ( 1𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ( 1𝑌))) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
6535, 47, 643bitrd 304 . 2 (𝜑 → (𝐹 ∈ dom ((𝑋(Sect‘𝐶)𝑌) ∩ (𝑌(Sect‘𝐶)𝑋)) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
668, 12, 653bitrd 304 1 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔 𝐹) = ( 1𝑋) ∧ (𝐹 𝑔) = ( 1𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  {cab 2702  wrex 3059  cin 3943  cop 4636  {copab 5211  ccnv 5677  dom cdm 5678  cfv 6549  (class class class)co 7419  Basecbs 17183  Hom chom 17247  compcco 17248  Catccat 17647  Idccid 17648  Sectcsect 17730  Invcinv 17731  Isociso 17732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-sect 17733  df-inv 17734  df-iso 17735
This theorem is referenced by:  dfiso3  17759
  Copyright terms: Public domain W3C validator