MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmo Structured version   Visualization version   GIF version

Theorem infmo 9535
Description: Any class 𝐵 has at most one infimum in 𝐴 (where 𝑅 is interpreted as 'less than'). (Contributed by AV, 6-Oct-2020.)
Hypothesis
Ref Expression
infmo.1 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
infmo (𝜑 → ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑅,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem infmo
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 infmo.1 . . 3 (𝜑𝑅 Or 𝐴)
2 ancom 460 . . . . . . . 8 ((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤) ↔ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
32anbi2ci 625 . . . . . . 7 (((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤) ∧ (∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) ↔ ((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)))
4 an42 657 . . . . . . 7 (((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) ↔ ((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤) ∧ (∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
5 an42 657 . . . . . . 7 (((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ∧ (∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤)) ↔ ((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)))
63, 4, 53bitr4i 303 . . . . . 6 (((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) ↔ ((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ∧ (∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤)))
7 ralnex 3072 . . . . . . . . . . . . 13 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ¬ ∃𝑦𝐵 𝑦𝑅𝑥)
8 breq2 5147 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (𝑤𝑅𝑦𝑤𝑅𝑥))
9 breq2 5147 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → (𝑧𝑅𝑦𝑧𝑅𝑥))
109rexbidv 3179 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (∃𝑧𝐵 𝑧𝑅𝑦 ↔ ∃𝑧𝐵 𝑧𝑅𝑥))
118, 10imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → ((𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑧𝑅𝑥)))
1211rspcva 3620 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (𝑤𝑅𝑥 → ∃𝑧𝐵 𝑧𝑅𝑥))
13 breq1 5146 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
1413cbvrexvw 3238 . . . . . . . . . . . . . . 15 (∃𝑦𝐵 𝑦𝑅𝑥 ↔ ∃𝑧𝐵 𝑧𝑅𝑥)
1512, 14imbitrrdi 252 . . . . . . . . . . . . . 14 ((𝑥𝐴 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (𝑤𝑅𝑥 → ∃𝑦𝐵 𝑦𝑅𝑥))
1615con3d 152 . . . . . . . . . . . . 13 ((𝑥𝐴 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (¬ ∃𝑦𝐵 𝑦𝑅𝑥 → ¬ 𝑤𝑅𝑥))
177, 16biimtrid 242 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 → ¬ 𝑤𝑅𝑥))
1817expimpd 453 . . . . . . . . . . 11 (𝑥𝐴 → ((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) → ¬ 𝑤𝑅𝑥))
1918ad2antrl 728 . . . . . . . . . 10 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑤𝐴)) → ((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) → ¬ 𝑤𝑅𝑥))
20 ralnex 3072 . . . . . . . . . . . . 13 (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ↔ ¬ ∃𝑦𝐵 𝑦𝑅𝑤)
21 breq2 5147 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑤 → (𝑥𝑅𝑦𝑥𝑅𝑤))
22 breq2 5147 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑤 → (𝑧𝑅𝑦𝑧𝑅𝑤))
2322rexbidv 3179 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑤 → (∃𝑧𝐵 𝑧𝑅𝑦 ↔ ∃𝑧𝐵 𝑧𝑅𝑤))
2421, 23imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → ((𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ (𝑥𝑅𝑤 → ∃𝑧𝐵 𝑧𝑅𝑤)))
2524rspcva 3620 . . . . . . . . . . . . . . 15 ((𝑤𝐴 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (𝑥𝑅𝑤 → ∃𝑧𝐵 𝑧𝑅𝑤))
26 breq1 5146 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → (𝑦𝑅𝑤𝑧𝑅𝑤))
2726cbvrexvw 3238 . . . . . . . . . . . . . . 15 (∃𝑦𝐵 𝑦𝑅𝑤 ↔ ∃𝑧𝐵 𝑧𝑅𝑤)
2825, 27imbitrrdi 252 . . . . . . . . . . . . . 14 ((𝑤𝐴 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (𝑥𝑅𝑤 → ∃𝑦𝐵 𝑦𝑅𝑤))
2928con3d 152 . . . . . . . . . . . . 13 ((𝑤𝐴 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (¬ ∃𝑦𝐵 𝑦𝑅𝑤 → ¬ 𝑥𝑅𝑤))
3020, 29biimtrid 242 . . . . . . . . . . . 12 ((𝑤𝐴 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 → ¬ 𝑥𝑅𝑤))
3130expimpd 453 . . . . . . . . . . 11 (𝑤𝐴 → ((∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤) → ¬ 𝑥𝑅𝑤))
3231ad2antll 729 . . . . . . . . . 10 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑤𝐴)) → ((∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤) → ¬ 𝑥𝑅𝑤))
3319, 32anim12d 609 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑤𝐴)) → (((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ∧ (∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤)) → (¬ 𝑤𝑅𝑥 ∧ ¬ 𝑥𝑅𝑤)))
3433imp 406 . . . . . . . 8 (((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑤𝐴)) ∧ ((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ∧ (∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤))) → (¬ 𝑤𝑅𝑥 ∧ ¬ 𝑥𝑅𝑤))
3534ancomd 461 . . . . . . 7 (((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑤𝐴)) ∧ ((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ∧ (∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤))) → (¬ 𝑥𝑅𝑤 ∧ ¬ 𝑤𝑅𝑥))
3635ex 412 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑤𝐴)) → (((∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ∧ (∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤)) → (¬ 𝑥𝑅𝑤 ∧ ¬ 𝑤𝑅𝑥)))
376, 36biimtrid 242 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑤𝐴)) → (((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) → (¬ 𝑥𝑅𝑤 ∧ ¬ 𝑤𝑅𝑥)))
38 sotrieq2 5624 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑤𝐴)) → (𝑥 = 𝑤 ↔ (¬ 𝑥𝑅𝑤 ∧ ¬ 𝑤𝑅𝑥)))
3937, 38sylibrd 259 . . . 4 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑤𝐴)) → (((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) → 𝑥 = 𝑤))
4039ralrimivva 3202 . . 3 (𝑅 Or 𝐴 → ∀𝑥𝐴𝑤𝐴 (((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) → 𝑥 = 𝑤))
411, 40syl 17 . 2 (𝜑 → ∀𝑥𝐴𝑤𝐴 (((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) → 𝑥 = 𝑤))
42 breq2 5147 . . . . . 6 (𝑥 = 𝑤 → (𝑦𝑅𝑥𝑦𝑅𝑤))
4342notbid 318 . . . . 5 (𝑥 = 𝑤 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑤))
4443ralbidv 3178 . . . 4 (𝑥 = 𝑤 → (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑤))
45 breq1 5146 . . . . . 6 (𝑥 = 𝑤 → (𝑥𝑅𝑦𝑤𝑅𝑦))
4645imbi1d 341 . . . . 5 (𝑥 = 𝑤 → ((𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
4746ralbidv 3178 . . . 4 (𝑥 = 𝑤 → (∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
4844, 47anbi12d 632 . . 3 (𝑥 = 𝑤 → ((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
4948rmo4 3736 . 2 (∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ ∀𝑥𝐴𝑤𝐴 (((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ∧ (∀𝑦𝐵 ¬ 𝑦𝑅𝑤 ∧ ∀𝑦𝐴 (𝑤𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))) → 𝑥 = 𝑤))
5041, 49sylibr 234 1 (𝜑 → ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wral 3061  wrex 3070  ∃*wrmo 3379   class class class wbr 5143   Or wor 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-mo 2540  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rmo 3380  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-po 5592  df-so 5593
This theorem is referenced by:  infeu  9536
  Copyright terms: Public domain W3C validator