Proof of Theorem brecop2
| Step | Hyp | Ref
| Expression |
| 1 | | brecop2.3 |
. . . 4
⊢ 𝑅 ⊆ (𝐻 × 𝐻) |
| 2 | 1 | brel 5749 |
. . 3
⊢
([〈𝐴, 𝐵〉] ∼ 𝑅[〈𝐶, 𝐷〉] ∼ →
([〈𝐴, 𝐵〉] ∼ ∈ 𝐻 ∧ [〈𝐶, 𝐷〉] ∼ ∈ 𝐻)) |
| 3 | | brecop2.1 |
. . . . . . 7
⊢ dom ∼ =
(𝐺 × 𝐺) |
| 4 | | ecelqsdm 8828 |
. . . . . . 7
⊢ ((dom
∼
= (𝐺 × 𝐺) ∧ [〈𝐴, 𝐵〉] ∼ ∈ ((𝐺 × 𝐺) / ∼ )) →
〈𝐴, 𝐵〉 ∈ (𝐺 × 𝐺)) |
| 5 | 3, 4 | mpan 690 |
. . . . . 6
⊢
([〈𝐴, 𝐵〉] ∼ ∈ ((𝐺 × 𝐺) / ∼ ) →
〈𝐴, 𝐵〉 ∈ (𝐺 × 𝐺)) |
| 6 | | brecop2.2 |
. . . . . 6
⊢ 𝐻 = ((𝐺 × 𝐺) / ∼ ) |
| 7 | 5, 6 | eleq2s 2858 |
. . . . 5
⊢
([〈𝐴, 𝐵〉] ∼ ∈ 𝐻 → 〈𝐴, 𝐵〉 ∈ (𝐺 × 𝐺)) |
| 8 | | opelxp 5720 |
. . . . 5
⊢
(〈𝐴, 𝐵〉 ∈ (𝐺 × 𝐺) ↔ (𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺)) |
| 9 | 7, 8 | sylib 218 |
. . . 4
⊢
([〈𝐴, 𝐵〉] ∼ ∈ 𝐻 → (𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺)) |
| 10 | | ecelqsdm 8828 |
. . . . . . 7
⊢ ((dom
∼
= (𝐺 × 𝐺) ∧ [〈𝐶, 𝐷〉] ∼ ∈ ((𝐺 × 𝐺) / ∼ )) →
〈𝐶, 𝐷〉 ∈ (𝐺 × 𝐺)) |
| 11 | 3, 10 | mpan 690 |
. . . . . 6
⊢
([〈𝐶, 𝐷〉] ∼ ∈ ((𝐺 × 𝐺) / ∼ ) →
〈𝐶, 𝐷〉 ∈ (𝐺 × 𝐺)) |
| 12 | 11, 6 | eleq2s 2858 |
. . . . 5
⊢
([〈𝐶, 𝐷〉] ∼ ∈ 𝐻 → 〈𝐶, 𝐷〉 ∈ (𝐺 × 𝐺)) |
| 13 | | opelxp 5720 |
. . . . 5
⊢
(〈𝐶, 𝐷〉 ∈ (𝐺 × 𝐺) ↔ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) |
| 14 | 12, 13 | sylib 218 |
. . . 4
⊢
([〈𝐶, 𝐷〉] ∼ ∈ 𝐻 → (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) |
| 15 | 9, 14 | anim12i 613 |
. . 3
⊢
(([〈𝐴, 𝐵〉] ∼ ∈ 𝐻 ∧ [〈𝐶, 𝐷〉] ∼ ∈ 𝐻) → ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺))) |
| 16 | 2, 15 | syl 17 |
. 2
⊢
([〈𝐴, 𝐵〉] ∼ 𝑅[〈𝐶, 𝐷〉] ∼ → ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺))) |
| 17 | | brecop2.4 |
. . . . 5
⊢ ≤ ⊆
(𝐺 × 𝐺) |
| 18 | 17 | brel 5749 |
. . . 4
⊢ ((𝐴 + 𝐷) ≤ (𝐵 + 𝐶) → ((𝐴 + 𝐷) ∈ 𝐺 ∧ (𝐵 + 𝐶) ∈ 𝐺)) |
| 19 | | brecop2.6 |
. . . . . 6
⊢ dom + = (𝐺 × 𝐺) |
| 20 | | brecop2.5 |
. . . . . 6
⊢ ¬
∅ ∈ 𝐺 |
| 21 | 19, 20 | ndmovrcl 7620 |
. . . . 5
⊢ ((𝐴 + 𝐷) ∈ 𝐺 → (𝐴 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) |
| 22 | 19, 20 | ndmovrcl 7620 |
. . . . 5
⊢ ((𝐵 + 𝐶) ∈ 𝐺 → (𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐺)) |
| 23 | 21, 22 | anim12i 613 |
. . . 4
⊢ (((𝐴 + 𝐷) ∈ 𝐺 ∧ (𝐵 + 𝐶) ∈ 𝐺) → ((𝐴 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺) ∧ (𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐺))) |
| 24 | 18, 23 | syl 17 |
. . 3
⊢ ((𝐴 + 𝐷) ≤ (𝐵 + 𝐶) → ((𝐴 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺) ∧ (𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐺))) |
| 25 | | an42 657 |
. . 3
⊢ (((𝐴 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺) ∧ (𝐵 ∈ 𝐺 ∧ 𝐶 ∈ 𝐺)) ↔ ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺))) |
| 26 | 24, 25 | sylib 218 |
. 2
⊢ ((𝐴 + 𝐷) ≤ (𝐵 + 𝐶) → ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺))) |
| 27 | | brecop2.7 |
. 2
⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → ([〈𝐴, 𝐵〉] ∼ 𝑅[〈𝐶, 𝐷〉] ∼ ↔ (𝐴 + 𝐷) ≤ (𝐵 + 𝐶))) |
| 28 | 16, 26, 27 | pm5.21nii 378 |
1
⊢
([〈𝐴, 𝐵〉] ∼ 𝑅[〈𝐶, 𝐷〉] ∼ ↔ (𝐴 + 𝐷) ≤ (𝐵 + 𝐶)) |