Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemt0 Structured version   Visualization version   GIF version

Theorem eulerpartlemt0 34360
Description: Lemma for eulerpart 34373. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
Assertion
Ref Expression
eulerpartlemt0 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐽
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐽(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)

Proof of Theorem eulerpartlemt0
StepHypRef Expression
1 cnveq 5837 . . . . . 6 (𝑓 = 𝐴𝑓 = 𝐴)
21imaeq1d 6030 . . . . 5 (𝑓 = 𝐴 → (𝑓 “ ℕ) = (𝐴 “ ℕ))
32sseq1d 3978 . . . 4 (𝑓 = 𝐴 → ((𝑓 “ ℕ) ⊆ 𝐽 ↔ (𝐴 “ ℕ) ⊆ 𝐽))
4 eulerpart.t . . . 4 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
53, 4elrab2 3662 . . 3 (𝐴𝑇 ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ⊆ 𝐽))
62eleq1d 2813 . . . 4 (𝑓 = 𝐴 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐴 “ ℕ) ∈ Fin))
7 eulerpart.r . . . 4 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
86, 7elab4g 3650 . . 3 (𝐴𝑅 ↔ (𝐴 ∈ V ∧ (𝐴 “ ℕ) ∈ Fin))
95, 8anbi12i 628 . 2 ((𝐴𝑇𝐴𝑅) ↔ ((𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ⊆ 𝐽) ∧ (𝐴 ∈ V ∧ (𝐴 “ ℕ) ∈ Fin)))
10 elin 3930 . 2 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴𝑇𝐴𝑅))
11 elex 3468 . . . . 5 (𝐴 ∈ (ℕ0m ℕ) → 𝐴 ∈ V)
1211pm4.71i 559 . . . 4 (𝐴 ∈ (ℕ0m ℕ) ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ 𝐴 ∈ V))
1312anbi1i 624 . . 3 ((𝐴 ∈ (ℕ0m ℕ) ∧ ((𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽)) ↔ ((𝐴 ∈ (ℕ0m ℕ) ∧ 𝐴 ∈ V) ∧ ((𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽)))
14 3anass 1094 . . 3 ((𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽) ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ ((𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽)))
15 an42 657 . . 3 (((𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ⊆ 𝐽) ∧ (𝐴 ∈ V ∧ (𝐴 “ ℕ) ∈ Fin)) ↔ ((𝐴 ∈ (ℕ0m ℕ) ∧ 𝐴 ∈ V) ∧ ((𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽)))
1613, 14, 153bitr4i 303 . 2 ((𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽) ↔ ((𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ⊆ 𝐽) ∧ (𝐴 ∈ V ∧ (𝐴 “ ℕ) ∈ Fin)))
179, 10, 163bitr4i 303 1 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  {crab 3405  Vcvv 3447  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563   class class class wbr 5107  {copab 5169  cmpt 5188  ccnv 5637  cima 5641  cfv 6511  (class class class)co 7387  cmpo 7389   supp csupp 8139  m cmap 8799  Fincfn 8918  1c1 11069   · cmul 11073  cle 11209  cn 12186  2c2 12241  0cn0 12442  cexp 14026  Σcsu 15652  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  eulerpartlemf  34361  eulerpartlemt  34362  eulerpartlemmf  34366  eulerpartlemgvv  34367  eulerpartlemgu  34368  eulerpartlemgh  34369  eulerpartlemgs2  34371  eulerpartlemn  34372
  Copyright terms: Public domain W3C validator