![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemt0 | Structured version Visualization version GIF version |
Description: Lemma for eulerpart 31257. (Contributed by Thierry Arnoux, 19-Sep-2017.) |
Ref | Expression |
---|---|
eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑𝑚 ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
eulerpart.o | ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
eulerpart.d | ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
eulerpart.j | ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
eulerpart.f | ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
eulerpart.h | ⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} |
eulerpart.m | ⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
eulerpart.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
eulerpart.t | ⊢ 𝑇 = {𝑓 ∈ (ℕ0 ↑𝑚 ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} |
Ref | Expression |
---|---|
eulerpartlemt0 | ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) ↔ (𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 5630 | . . . . . 6 ⊢ (𝑓 = 𝐴 → ◡𝑓 = ◡𝐴) | |
2 | 1 | imaeq1d 5805 | . . . . 5 ⊢ (𝑓 = 𝐴 → (◡𝑓 “ ℕ) = (◡𝐴 “ ℕ)) |
3 | 2 | sseq1d 3919 | . . . 4 ⊢ (𝑓 = 𝐴 → ((◡𝑓 “ ℕ) ⊆ 𝐽 ↔ (◡𝐴 “ ℕ) ⊆ 𝐽)) |
4 | eulerpart.t | . . . 4 ⊢ 𝑇 = {𝑓 ∈ (ℕ0 ↑𝑚 ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} | |
5 | 3, 4 | elrab2 3621 | . . 3 ⊢ (𝐴 ∈ 𝑇 ↔ (𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ (◡𝐴 “ ℕ) ⊆ 𝐽)) |
6 | 2 | eleq1d 2867 | . . . 4 ⊢ (𝑓 = 𝐴 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝐴 “ ℕ) ∈ Fin)) |
7 | eulerpart.r | . . . 4 ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
8 | 6, 7 | elab4g 3609 | . . 3 ⊢ (𝐴 ∈ 𝑅 ↔ (𝐴 ∈ V ∧ (◡𝐴 “ ℕ) ∈ Fin)) |
9 | 5, 8 | anbi12i 626 | . 2 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝐴 ∈ 𝑅) ↔ ((𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ (◡𝐴 “ ℕ) ⊆ 𝐽) ∧ (𝐴 ∈ V ∧ (◡𝐴 “ ℕ) ∈ Fin))) |
10 | elin 4090 | . 2 ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) ↔ (𝐴 ∈ 𝑇 ∧ 𝐴 ∈ 𝑅)) | |
11 | elex 3455 | . . . . 5 ⊢ (𝐴 ∈ (ℕ0 ↑𝑚 ℕ) → 𝐴 ∈ V) | |
12 | 11 | pm4.71i 560 | . . . 4 ⊢ (𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ↔ (𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ 𝐴 ∈ V)) |
13 | 12 | anbi1i 623 | . . 3 ⊢ ((𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽)) ↔ ((𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ 𝐴 ∈ V) ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽))) |
14 | 3anass 1088 | . . 3 ⊢ ((𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽) ↔ (𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽))) | |
15 | an42 653 | . . 3 ⊢ (((𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ (◡𝐴 “ ℕ) ⊆ 𝐽) ∧ (𝐴 ∈ V ∧ (◡𝐴 “ ℕ) ∈ Fin)) ↔ ((𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ 𝐴 ∈ V) ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽))) | |
16 | 13, 14, 15 | 3bitr4i 304 | . 2 ⊢ ((𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽) ↔ ((𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ (◡𝐴 “ ℕ) ⊆ 𝐽) ∧ (𝐴 ∈ V ∧ (◡𝐴 “ ℕ) ∈ Fin))) |
17 | 9, 10, 16 | 3bitr4i 304 | 1 ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) ↔ (𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 {cab 2775 ∀wral 3105 {crab 3109 Vcvv 3437 ∩ cin 3858 ⊆ wss 3859 ∅c0 4211 𝒫 cpw 4453 class class class wbr 4962 {copab 5024 ↦ cmpt 5041 ◡ccnv 5442 “ cima 5446 ‘cfv 6225 (class class class)co 7016 ∈ cmpo 7018 supp csupp 7681 ↑𝑚 cmap 8256 Fincfn 8357 1c1 10384 · cmul 10388 ≤ cle 10522 ℕcn 11486 2c2 11540 ℕ0cn0 11745 ↑cexp 13279 Σcsu 14876 ∥ cdvds 15440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-br 4963 df-opab 5025 df-cnv 5451 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 |
This theorem is referenced by: eulerpartlemf 31245 eulerpartlemt 31246 eulerpartlemmf 31250 eulerpartlemgvv 31251 eulerpartlemgu 31252 eulerpartlemgh 31253 eulerpartlemgs2 31255 eulerpartlemn 31256 |
Copyright terms: Public domain | W3C validator |