Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemt0 Structured version   Visualization version   GIF version

Theorem eulerpartlemt0 32336
Description: Lemma for eulerpart 32349. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
Assertion
Ref Expression
eulerpartlemt0 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐽
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐽(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)

Proof of Theorem eulerpartlemt0
StepHypRef Expression
1 cnveq 5782 . . . . . 6 (𝑓 = 𝐴𝑓 = 𝐴)
21imaeq1d 5968 . . . . 5 (𝑓 = 𝐴 → (𝑓 “ ℕ) = (𝐴 “ ℕ))
32sseq1d 3952 . . . 4 (𝑓 = 𝐴 → ((𝑓 “ ℕ) ⊆ 𝐽 ↔ (𝐴 “ ℕ) ⊆ 𝐽))
4 eulerpart.t . . . 4 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
53, 4elrab2 3627 . . 3 (𝐴𝑇 ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ⊆ 𝐽))
62eleq1d 2823 . . . 4 (𝑓 = 𝐴 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐴 “ ℕ) ∈ Fin))
7 eulerpart.r . . . 4 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
86, 7elab4g 3614 . . 3 (𝐴𝑅 ↔ (𝐴 ∈ V ∧ (𝐴 “ ℕ) ∈ Fin))
95, 8anbi12i 627 . 2 ((𝐴𝑇𝐴𝑅) ↔ ((𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ⊆ 𝐽) ∧ (𝐴 ∈ V ∧ (𝐴 “ ℕ) ∈ Fin)))
10 elin 3903 . 2 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴𝑇𝐴𝑅))
11 elex 3450 . . . . 5 (𝐴 ∈ (ℕ0m ℕ) → 𝐴 ∈ V)
1211pm4.71i 560 . . . 4 (𝐴 ∈ (ℕ0m ℕ) ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ 𝐴 ∈ V))
1312anbi1i 624 . . 3 ((𝐴 ∈ (ℕ0m ℕ) ∧ ((𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽)) ↔ ((𝐴 ∈ (ℕ0m ℕ) ∧ 𝐴 ∈ V) ∧ ((𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽)))
14 3anass 1094 . . 3 ((𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽) ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ ((𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽)))
15 an42 654 . . 3 (((𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ⊆ 𝐽) ∧ (𝐴 ∈ V ∧ (𝐴 “ ℕ) ∈ Fin)) ↔ ((𝐴 ∈ (ℕ0m ℕ) ∧ 𝐴 ∈ V) ∧ ((𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽)))
1613, 14, 153bitr4i 303 . 2 ((𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽) ↔ ((𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ⊆ 𝐽) ∧ (𝐴 ∈ V ∧ (𝐴 “ ℕ) ∈ Fin)))
179, 10, 163bitr4i 303 1 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wral 3064  {crab 3068  Vcvv 3432  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533   class class class wbr 5074  {copab 5136  cmpt 5157  ccnv 5588  cima 5592  cfv 6433  (class class class)co 7275  cmpo 7277   supp csupp 7977  m cmap 8615  Fincfn 8733  1c1 10872   · cmul 10876  cle 11010  cn 11973  2c2 12028  0cn0 12233  cexp 13782  Σcsu 15397  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602
This theorem is referenced by:  eulerpartlemf  32337  eulerpartlemt  32338  eulerpartlemmf  32342  eulerpartlemgvv  32343  eulerpartlemgu  32344  eulerpartlemgh  32345  eulerpartlemgs2  32347  eulerpartlemn  32348
  Copyright terms: Public domain W3C validator