| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemt0 | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34385. (Contributed by Thierry Arnoux, 19-Sep-2017.) |
| Ref | Expression |
|---|---|
| eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
| eulerpart.o | ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
| eulerpart.d | ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
| eulerpart.j | ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
| eulerpart.f | ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
| eulerpart.h | ⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} |
| eulerpart.m | ⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
| eulerpart.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| eulerpart.t | ⊢ 𝑇 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} |
| Ref | Expression |
|---|---|
| eulerpartlemt0 | ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) ↔ (𝐴 ∈ (ℕ0 ↑m ℕ) ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq 5811 | . . . . . 6 ⊢ (𝑓 = 𝐴 → ◡𝑓 = ◡𝐴) | |
| 2 | 1 | imaeq1d 6005 | . . . . 5 ⊢ (𝑓 = 𝐴 → (◡𝑓 “ ℕ) = (◡𝐴 “ ℕ)) |
| 3 | 2 | sseq1d 3964 | . . . 4 ⊢ (𝑓 = 𝐴 → ((◡𝑓 “ ℕ) ⊆ 𝐽 ↔ (◡𝐴 “ ℕ) ⊆ 𝐽)) |
| 4 | eulerpart.t | . . . 4 ⊢ 𝑇 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} | |
| 5 | 3, 4 | elrab2 3648 | . . 3 ⊢ (𝐴 ∈ 𝑇 ↔ (𝐴 ∈ (ℕ0 ↑m ℕ) ∧ (◡𝐴 “ ℕ) ⊆ 𝐽)) |
| 6 | 2 | eleq1d 2814 | . . . 4 ⊢ (𝑓 = 𝐴 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝐴 “ ℕ) ∈ Fin)) |
| 7 | eulerpart.r | . . . 4 ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 8 | 6, 7 | elab4g 3637 | . . 3 ⊢ (𝐴 ∈ 𝑅 ↔ (𝐴 ∈ V ∧ (◡𝐴 “ ℕ) ∈ Fin)) |
| 9 | 5, 8 | anbi12i 628 | . 2 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝐴 ∈ 𝑅) ↔ ((𝐴 ∈ (ℕ0 ↑m ℕ) ∧ (◡𝐴 “ ℕ) ⊆ 𝐽) ∧ (𝐴 ∈ V ∧ (◡𝐴 “ ℕ) ∈ Fin))) |
| 10 | elin 3916 | . 2 ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) ↔ (𝐴 ∈ 𝑇 ∧ 𝐴 ∈ 𝑅)) | |
| 11 | elex 3455 | . . . . 5 ⊢ (𝐴 ∈ (ℕ0 ↑m ℕ) → 𝐴 ∈ V) | |
| 12 | 11 | pm4.71i 559 | . . . 4 ⊢ (𝐴 ∈ (ℕ0 ↑m ℕ) ↔ (𝐴 ∈ (ℕ0 ↑m ℕ) ∧ 𝐴 ∈ V)) |
| 13 | 12 | anbi1i 624 | . . 3 ⊢ ((𝐴 ∈ (ℕ0 ↑m ℕ) ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽)) ↔ ((𝐴 ∈ (ℕ0 ↑m ℕ) ∧ 𝐴 ∈ V) ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽))) |
| 14 | 3anass 1094 | . . 3 ⊢ ((𝐴 ∈ (ℕ0 ↑m ℕ) ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽) ↔ (𝐴 ∈ (ℕ0 ↑m ℕ) ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽))) | |
| 15 | an42 657 | . . 3 ⊢ (((𝐴 ∈ (ℕ0 ↑m ℕ) ∧ (◡𝐴 “ ℕ) ⊆ 𝐽) ∧ (𝐴 ∈ V ∧ (◡𝐴 “ ℕ) ∈ Fin)) ↔ ((𝐴 ∈ (ℕ0 ↑m ℕ) ∧ 𝐴 ∈ V) ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽))) | |
| 16 | 13, 14, 15 | 3bitr4i 303 | . 2 ⊢ ((𝐴 ∈ (ℕ0 ↑m ℕ) ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽) ↔ ((𝐴 ∈ (ℕ0 ↑m ℕ) ∧ (◡𝐴 “ ℕ) ⊆ 𝐽) ∧ (𝐴 ∈ V ∧ (◡𝐴 “ ℕ) ∈ Fin))) |
| 17 | 9, 10, 16 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) ↔ (𝐴 ∈ (ℕ0 ↑m ℕ) ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 {cab 2708 ∀wral 3045 {crab 3393 Vcvv 3434 ∩ cin 3899 ⊆ wss 3900 ∅c0 4281 𝒫 cpw 4548 class class class wbr 5089 {copab 5151 ↦ cmpt 5170 ◡ccnv 5613 “ cima 5617 ‘cfv 6477 (class class class)co 7341 ∈ cmpo 7343 supp csupp 8085 ↑m cmap 8745 Fincfn 8864 1c1 10999 · cmul 11003 ≤ cle 11139 ℕcn 12117 2c2 12172 ℕ0cn0 12373 ↑cexp 13960 Σcsu 15585 ∥ cdvds 16155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 |
| This theorem is referenced by: eulerpartlemf 34373 eulerpartlemt 34374 eulerpartlemmf 34378 eulerpartlemgvv 34379 eulerpartlemgu 34380 eulerpartlemgh 34381 eulerpartlemgs2 34383 eulerpartlemn 34384 |
| Copyright terms: Public domain | W3C validator |