Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashssdif Structured version   Visualization version   GIF version

Theorem hashssdif 13754
 Description: The size of the difference of a finite set and a subset is the set's size minus the subset's. (Contributed by Steve Rodriguez, 24-Oct-2015.)
Assertion
Ref Expression
hashssdif ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) − (♯‘𝐵)))

Proof of Theorem hashssdif
StepHypRef Expression
1 ssfi 8712 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
2 diffi 8724 . . . . . . 7 (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
3 disjdif 4393 . . . . . . . 8 (𝐵 ∩ (𝐴𝐵)) = ∅
4 hashun 13724 . . . . . . . 8 ((𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin ∧ (𝐵 ∩ (𝐴𝐵)) = ∅) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
53, 4mp3an3 1446 . . . . . . 7 ((𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
61, 2, 5syl2an 597 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝐴 ∈ Fin) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
76anabss1 664 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
8 undif 4402 . . . . . . . 8 (𝐵𝐴 ↔ (𝐵 ∪ (𝐴𝐵)) = 𝐴)
98biimpi 218 . . . . . . 7 (𝐵𝐴 → (𝐵 ∪ (𝐴𝐵)) = 𝐴)
109fveqeq2d 6650 . . . . . 6 (𝐵𝐴 → ((♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))) ↔ (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴𝐵)))))
1110adantl 484 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))) ↔ (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴𝐵)))))
127, 11mpbid 234 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
1312eqcomd 2826 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴))
14 hashcl 13698 . . . . . . 7 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
1514nn0cnd 11932 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ)
16 hashcl 13698 . . . . . . . 8 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
171, 16syl 17 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐵) ∈ ℕ0)
1817nn0cnd 11932 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐵) ∈ ℂ)
19 hashcl 13698 . . . . . . . 8 ((𝐴𝐵) ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℕ0)
202, 19syl 17 . . . . . . 7 (𝐴 ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℕ0)
2120nn0cnd 11932 . . . . . 6 (𝐴 ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℂ)
22 subadd 10863 . . . . . 6 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ ∧ (♯‘(𝐴𝐵)) ∈ ℂ) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
2315, 18, 21, 22syl3an 1156 . . . . 5 ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝐴 ∈ Fin) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
24233anidm13 1416 . . . 4 ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵𝐴)) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
2524anabss5 666 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
2613, 25mpbird 259 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)))
2726eqcomd 2826 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) − (♯‘𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1537   ∈ wcel 2114   ∖ cdif 3906   ∪ cun 3907   ∩ cin 3908   ⊆ wss 3909  ∅c0 4265  ‘cfv 6327  (class class class)co 7129  Fincfn 8483  ℂcc 10509   + caddc 10514   − cmin 10844  ℕ0cn0 11872  ♯chash 13671 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5162  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435  ax-cnex 10567  ax-resscn 10568  ax-1cn 10569  ax-icn 10570  ax-addcl 10571  ax-addrcl 10572  ax-mulcl 10573  ax-mulrcl 10574  ax-mulcom 10575  ax-addass 10576  ax-mulass 10577  ax-distr 10578  ax-i2m1 10579  ax-1ne0 10580  ax-1rid 10581  ax-rnegex 10582  ax-rrecex 10583  ax-cnre 10584  ax-pre-lttri 10585  ax-pre-lttrn 10586  ax-pre-ltadd 10587  ax-pre-mulgt0 10588 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4811  df-int 4849  df-iun 4893  df-br 5039  df-opab 5101  df-mpt 5119  df-tr 5145  df-id 5432  df-eprel 5437  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7087  df-ov 7132  df-oprab 7133  df-mpo 7134  df-om 7555  df-1st 7663  df-2nd 7664  df-wrecs 7921  df-recs 7982  df-rdg 8020  df-1o 8076  df-oadd 8080  df-er 8263  df-en 8484  df-dom 8485  df-sdom 8486  df-fin 8487  df-dju 9304  df-card 9342  df-pnf 10651  df-mnf 10652  df-xr 10653  df-ltxr 10654  df-le 10655  df-sub 10846  df-neg 10847  df-nn 11613  df-n0 11873  df-z 11957  df-uz 12219  df-hash 13672 This theorem is referenced by:  hashdif  13755  hashdifsn  13756  hashreshashfun  13781  hashdifsnp1  13835  uvtxnm1nbgr  27169  clwwlknclwwlkdifnum  27740  cycpmconjslem2  30801  cyc3conja  30803  ballotlemfmpn  31756  ballotth  31799  poimirlem26  34955  poimirlem27  34956
 Copyright terms: Public domain W3C validator