| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashssdif | Structured version Visualization version GIF version | ||
| Description: The size of the difference of a finite set and a subset is the set's size minus the subset's. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
| Ref | Expression |
|---|---|
| hashssdif | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssfi 9137 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | |
| 2 | diffi 9139 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝐵) ∈ Fin) | |
| 3 | disjdif 4435 | . . . . . . . 8 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅ | |
| 4 | hashun 14347 | . . . . . . . 8 ⊢ ((𝐵 ∈ Fin ∧ (𝐴 ∖ 𝐵) ∈ Fin ∧ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅) → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) | |
| 5 | 3, 4 | mp3an3 1452 | . . . . . . 7 ⊢ ((𝐵 ∈ Fin ∧ (𝐴 ∖ 𝐵) ∈ Fin) → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) |
| 6 | 1, 2, 5 | syl2an 596 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝐴 ∈ Fin) → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) |
| 7 | 6 | anabss1 666 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) |
| 8 | undif 4445 | . . . . . . . 8 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) | |
| 9 | 8 | biimpi 216 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) |
| 10 | 9 | fveqeq2d 6866 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 → ((♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) ↔ (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))))) |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → ((♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) ↔ (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))))) |
| 12 | 7, 11 | mpbid 232 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) |
| 13 | 12 | eqcomd 2735 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴)) |
| 14 | hashcl 14321 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
| 15 | 14 | nn0cnd 12505 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ) |
| 16 | hashcl 14321 | . . . . . . . 8 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
| 17 | 1, 16 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ∈ ℕ0) |
| 18 | 17 | nn0cnd 12505 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ∈ ℂ) |
| 19 | hashcl 14321 | . . . . . . . 8 ⊢ ((𝐴 ∖ 𝐵) ∈ Fin → (♯‘(𝐴 ∖ 𝐵)) ∈ ℕ0) | |
| 20 | 2, 19 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (♯‘(𝐴 ∖ 𝐵)) ∈ ℕ0) |
| 21 | 20 | nn0cnd 12505 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘(𝐴 ∖ 𝐵)) ∈ ℂ) |
| 22 | subadd 11424 | . . . . . 6 ⊢ (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ ∧ (♯‘(𝐴 ∖ 𝐵)) ∈ ℂ) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴))) | |
| 23 | 15, 18, 21, 22 | syl3an 1160 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝐴 ∈ Fin) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴))) |
| 24 | 23 | 3anidm13 1422 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴)) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴))) |
| 25 | 24 | anabss5 668 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴))) |
| 26 | 13, 25 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → ((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵))) |
| 27 | 26 | eqcomd 2735 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ∪ cun 3912 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 ℂcc 11066 + caddc 11071 − cmin 11405 ℕ0cn0 12442 ♯chash 14295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-hash 14296 |
| This theorem is referenced by: hashdif 14378 hashdifsn 14379 hashreshashfun 14404 hashdifsnp1 14471 uvtxnm1nbgr 29331 clwwlknclwwlkdifnum 29909 cycpmconjslem2 33112 cyc3conja 33114 ballotlemfmpn 34486 ballotth 34529 poimirlem26 37640 poimirlem27 37641 |
| Copyright terms: Public domain | W3C validator |