| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashssdif | Structured version Visualization version GIF version | ||
| Description: The size of the difference of a finite set and a subset is the set's size minus the subset's. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
| Ref | Expression |
|---|---|
| hashssdif | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssfi 9192 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | |
| 2 | diffi 9194 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝐵) ∈ Fin) | |
| 3 | disjdif 4452 | . . . . . . . 8 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅ | |
| 4 | hashun 14405 | . . . . . . . 8 ⊢ ((𝐵 ∈ Fin ∧ (𝐴 ∖ 𝐵) ∈ Fin ∧ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅) → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) | |
| 5 | 3, 4 | mp3an3 1452 | . . . . . . 7 ⊢ ((𝐵 ∈ Fin ∧ (𝐴 ∖ 𝐵) ∈ Fin) → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) |
| 6 | 1, 2, 5 | syl2an 596 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝐴 ∈ Fin) → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) |
| 7 | 6 | anabss1 666 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) |
| 8 | undif 4462 | . . . . . . . 8 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) | |
| 9 | 8 | biimpi 216 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) |
| 10 | 9 | fveqeq2d 6889 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 → ((♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) ↔ (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))))) |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → ((♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) ↔ (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))))) |
| 12 | 7, 11 | mpbid 232 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) |
| 13 | 12 | eqcomd 2742 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴)) |
| 14 | hashcl 14379 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
| 15 | 14 | nn0cnd 12569 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ) |
| 16 | hashcl 14379 | . . . . . . . 8 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
| 17 | 1, 16 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ∈ ℕ0) |
| 18 | 17 | nn0cnd 12569 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ∈ ℂ) |
| 19 | hashcl 14379 | . . . . . . . 8 ⊢ ((𝐴 ∖ 𝐵) ∈ Fin → (♯‘(𝐴 ∖ 𝐵)) ∈ ℕ0) | |
| 20 | 2, 19 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (♯‘(𝐴 ∖ 𝐵)) ∈ ℕ0) |
| 21 | 20 | nn0cnd 12569 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘(𝐴 ∖ 𝐵)) ∈ ℂ) |
| 22 | subadd 11490 | . . . . . 6 ⊢ (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ ∧ (♯‘(𝐴 ∖ 𝐵)) ∈ ℂ) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴))) | |
| 23 | 15, 18, 21, 22 | syl3an 1160 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝐴 ∈ Fin) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴))) |
| 24 | 23 | 3anidm13 1422 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴)) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴))) |
| 25 | 24 | anabss5 668 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴))) |
| 26 | 13, 25 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → ((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵))) |
| 27 | 26 | eqcomd 2742 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ∪ cun 3929 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 ‘cfv 6536 (class class class)co 7410 Fincfn 8964 ℂcc 11132 + caddc 11137 − cmin 11471 ℕ0cn0 12506 ♯chash 14353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-hash 14354 |
| This theorem is referenced by: hashdif 14436 hashdifsn 14437 hashreshashfun 14462 hashdifsnp1 14529 uvtxnm1nbgr 29388 clwwlknclwwlkdifnum 29966 cycpmconjslem2 33171 cyc3conja 33173 ballotlemfmpn 34532 ballotth 34575 poimirlem26 37675 poimirlem27 37676 |
| Copyright terms: Public domain | W3C validator |