MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashssdif Structured version   Visualization version   GIF version

Theorem hashssdif 14448
Description: The size of the difference of a finite set and a subset is the set's size minus the subset's. (Contributed by Steve Rodriguez, 24-Oct-2015.)
Assertion
Ref Expression
hashssdif ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) − (♯‘𝐵)))

Proof of Theorem hashssdif
StepHypRef Expression
1 ssfi 9212 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
2 diffi 9214 . . . . . . 7 (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
3 disjdif 4478 . . . . . . . 8 (𝐵 ∩ (𝐴𝐵)) = ∅
4 hashun 14418 . . . . . . . 8 ((𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin ∧ (𝐵 ∩ (𝐴𝐵)) = ∅) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
53, 4mp3an3 1449 . . . . . . 7 ((𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
61, 2, 5syl2an 596 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝐴 ∈ Fin) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
76anabss1 666 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
8 undif 4488 . . . . . . . 8 (𝐵𝐴 ↔ (𝐵 ∪ (𝐴𝐵)) = 𝐴)
98biimpi 216 . . . . . . 7 (𝐵𝐴 → (𝐵 ∪ (𝐴𝐵)) = 𝐴)
109fveqeq2d 6915 . . . . . 6 (𝐵𝐴 → ((♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))) ↔ (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴𝐵)))))
1110adantl 481 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))) ↔ (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴𝐵)))))
127, 11mpbid 232 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
1312eqcomd 2741 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴))
14 hashcl 14392 . . . . . . 7 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
1514nn0cnd 12587 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ)
16 hashcl 14392 . . . . . . . 8 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
171, 16syl 17 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐵) ∈ ℕ0)
1817nn0cnd 12587 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐵) ∈ ℂ)
19 hashcl 14392 . . . . . . . 8 ((𝐴𝐵) ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℕ0)
202, 19syl 17 . . . . . . 7 (𝐴 ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℕ0)
2120nn0cnd 12587 . . . . . 6 (𝐴 ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℂ)
22 subadd 11509 . . . . . 6 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ ∧ (♯‘(𝐴𝐵)) ∈ ℂ) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
2315, 18, 21, 22syl3an 1159 . . . . 5 ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝐴 ∈ Fin) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
24233anidm13 1419 . . . 4 ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵𝐴)) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
2524anabss5 668 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
2613, 25mpbird 257 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)))
2726eqcomd 2741 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) − (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339  cfv 6563  (class class class)co 7431  Fincfn 8984  cc 11151   + caddc 11156  cmin 11490  0cn0 12524  chash 14366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-hash 14367
This theorem is referenced by:  hashdif  14449  hashdifsn  14450  hashreshashfun  14475  hashdifsnp1  14542  uvtxnm1nbgr  29436  clwwlknclwwlkdifnum  30009  cycpmconjslem2  33158  cyc3conja  33160  ballotlemfmpn  34476  ballotth  34519  poimirlem26  37633  poimirlem27  37634
  Copyright terms: Public domain W3C validator