| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashssdif | Structured version Visualization version GIF version | ||
| Description: The size of the difference of a finite set and a subset is the set's size minus the subset's. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
| Ref | Expression |
|---|---|
| hashssdif | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssfi 9087 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | |
| 2 | diffi 9089 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝐵) ∈ Fin) | |
| 3 | disjdif 4423 | . . . . . . . 8 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅ | |
| 4 | hashun 14289 | . . . . . . . 8 ⊢ ((𝐵 ∈ Fin ∧ (𝐴 ∖ 𝐵) ∈ Fin ∧ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅) → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) | |
| 5 | 3, 4 | mp3an3 1452 | . . . . . . 7 ⊢ ((𝐵 ∈ Fin ∧ (𝐴 ∖ 𝐵) ∈ Fin) → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) |
| 6 | 1, 2, 5 | syl2an 596 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝐴 ∈ Fin) → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) |
| 7 | 6 | anabss1 666 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) |
| 8 | undif 4433 | . . . . . . . 8 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) | |
| 9 | 8 | biimpi 216 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) |
| 10 | 9 | fveqeq2d 6830 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 → ((♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) ↔ (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))))) |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → ((♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) ↔ (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))))) |
| 12 | 7, 11 | mpbid 232 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) |
| 13 | 12 | eqcomd 2735 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴)) |
| 14 | hashcl 14263 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
| 15 | 14 | nn0cnd 12447 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ) |
| 16 | hashcl 14263 | . . . . . . . 8 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
| 17 | 1, 16 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ∈ ℕ0) |
| 18 | 17 | nn0cnd 12447 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ∈ ℂ) |
| 19 | hashcl 14263 | . . . . . . . 8 ⊢ ((𝐴 ∖ 𝐵) ∈ Fin → (♯‘(𝐴 ∖ 𝐵)) ∈ ℕ0) | |
| 20 | 2, 19 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (♯‘(𝐴 ∖ 𝐵)) ∈ ℕ0) |
| 21 | 20 | nn0cnd 12447 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘(𝐴 ∖ 𝐵)) ∈ ℂ) |
| 22 | subadd 11366 | . . . . . 6 ⊢ (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ ∧ (♯‘(𝐴 ∖ 𝐵)) ∈ ℂ) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴))) | |
| 23 | 15, 18, 21, 22 | syl3an 1160 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝐴 ∈ Fin) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴))) |
| 24 | 23 | 3anidm13 1422 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴)) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴))) |
| 25 | 24 | anabss5 668 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴))) |
| 26 | 13, 25 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → ((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵))) |
| 27 | 26 | eqcomd 2735 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3900 ∪ cun 3901 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 ‘cfv 6482 (class class class)co 7349 Fincfn 8872 ℂcc 11007 + caddc 11012 − cmin 11347 ℕ0cn0 12384 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-hash 14238 |
| This theorem is referenced by: hashdif 14320 hashdifsn 14321 hashreshashfun 14346 hashdifsnp1 14413 uvtxnm1nbgr 29349 clwwlknclwwlkdifnum 29924 cycpmconjslem2 33097 cyc3conja 33099 ballotlemfmpn 34463 ballotth 34506 poimirlem26 37630 poimirlem27 37631 |
| Copyright terms: Public domain | W3C validator |