MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashssdif Structured version   Visualization version   GIF version

Theorem hashssdif 14353
Description: The size of the difference of a finite set and a subset is the set's size minus the subset's. (Contributed by Steve Rodriguez, 24-Oct-2015.)
Assertion
Ref Expression
hashssdif ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) − (♯‘𝐵)))

Proof of Theorem hashssdif
StepHypRef Expression
1 ssfi 9114 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
2 diffi 9116 . . . . . . 7 (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
3 disjdif 4431 . . . . . . . 8 (𝐵 ∩ (𝐴𝐵)) = ∅
4 hashun 14323 . . . . . . . 8 ((𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin ∧ (𝐵 ∩ (𝐴𝐵)) = ∅) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
53, 4mp3an3 1452 . . . . . . 7 ((𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
61, 2, 5syl2an 596 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝐴 ∈ Fin) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
76anabss1 666 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
8 undif 4441 . . . . . . . 8 (𝐵𝐴 ↔ (𝐵 ∪ (𝐴𝐵)) = 𝐴)
98biimpi 216 . . . . . . 7 (𝐵𝐴 → (𝐵 ∪ (𝐴𝐵)) = 𝐴)
109fveqeq2d 6848 . . . . . 6 (𝐵𝐴 → ((♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))) ↔ (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴𝐵)))))
1110adantl 481 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))) ↔ (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴𝐵)))))
127, 11mpbid 232 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
1312eqcomd 2735 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴))
14 hashcl 14297 . . . . . . 7 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
1514nn0cnd 12481 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ)
16 hashcl 14297 . . . . . . . 8 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
171, 16syl 17 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐵) ∈ ℕ0)
1817nn0cnd 12481 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐵) ∈ ℂ)
19 hashcl 14297 . . . . . . . 8 ((𝐴𝐵) ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℕ0)
202, 19syl 17 . . . . . . 7 (𝐴 ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℕ0)
2120nn0cnd 12481 . . . . . 6 (𝐴 ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℂ)
22 subadd 11400 . . . . . 6 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ ∧ (♯‘(𝐴𝐵)) ∈ ℂ) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
2315, 18, 21, 22syl3an 1160 . . . . 5 ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝐴 ∈ Fin) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
24233anidm13 1422 . . . 4 ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵𝐴)) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
2524anabss5 668 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
2613, 25mpbird 257 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)))
2726eqcomd 2735 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) − (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11042   + caddc 11047  cmin 11381  0cn0 12418  chash 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-hash 14272
This theorem is referenced by:  hashdif  14354  hashdifsn  14355  hashreshashfun  14380  hashdifsnp1  14447  uvtxnm1nbgr  29307  clwwlknclwwlkdifnum  29882  cycpmconjslem2  33085  cyc3conja  33087  ballotlemfmpn  34459  ballotth  34502  poimirlem26  37613  poimirlem27  37614
  Copyright terms: Public domain W3C validator