MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashssdif Structured version   Visualization version   GIF version

Theorem hashssdif 14055
Description: The size of the difference of a finite set and a subset is the set's size minus the subset's. (Contributed by Steve Rodriguez, 24-Oct-2015.)
Assertion
Ref Expression
hashssdif ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) − (♯‘𝐵)))

Proof of Theorem hashssdif
StepHypRef Expression
1 ssfi 8918 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
2 diffi 8979 . . . . . . 7 (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
3 disjdif 4402 . . . . . . . 8 (𝐵 ∩ (𝐴𝐵)) = ∅
4 hashun 14025 . . . . . . . 8 ((𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin ∧ (𝐵 ∩ (𝐴𝐵)) = ∅) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
53, 4mp3an3 1448 . . . . . . 7 ((𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
61, 2, 5syl2an 595 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝐴 ∈ Fin) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
76anabss1 662 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
8 undif 4412 . . . . . . . 8 (𝐵𝐴 ↔ (𝐵 ∪ (𝐴𝐵)) = 𝐴)
98biimpi 215 . . . . . . 7 (𝐵𝐴 → (𝐵 ∪ (𝐴𝐵)) = 𝐴)
109fveqeq2d 6764 . . . . . 6 (𝐵𝐴 → ((♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))) ↔ (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴𝐵)))))
1110adantl 481 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))) ↔ (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴𝐵)))))
127, 11mpbid 231 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
1312eqcomd 2744 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴))
14 hashcl 13999 . . . . . . 7 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
1514nn0cnd 12225 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ)
16 hashcl 13999 . . . . . . . 8 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
171, 16syl 17 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐵) ∈ ℕ0)
1817nn0cnd 12225 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐵) ∈ ℂ)
19 hashcl 13999 . . . . . . . 8 ((𝐴𝐵) ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℕ0)
202, 19syl 17 . . . . . . 7 (𝐴 ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℕ0)
2120nn0cnd 12225 . . . . . 6 (𝐴 ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℂ)
22 subadd 11154 . . . . . 6 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ ∧ (♯‘(𝐴𝐵)) ∈ ℂ) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
2315, 18, 21, 22syl3an 1158 . . . . 5 ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝐴 ∈ Fin) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
24233anidm13 1418 . . . 4 ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵𝐴)) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
2524anabss5 664 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
2613, 25mpbird 256 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)))
2726eqcomd 2744 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) − (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800   + caddc 10805  cmin 11135  0cn0 12163  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-hash 13973
This theorem is referenced by:  hashdif  14056  hashdifsn  14057  hashreshashfun  14082  hashdifsnp1  14138  uvtxnm1nbgr  27674  clwwlknclwwlkdifnum  28245  cycpmconjslem2  31324  cyc3conja  31326  ballotlemfmpn  32361  ballotth  32404  poimirlem26  35730  poimirlem27  35731
  Copyright terms: Public domain W3C validator